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ABSTRACT 

The CORDIC algorithm is an accurate way to compute the value of a function 

like sin(x), for a given value of x.  However, it is iterative and slow.  In this thesis, we 

show that a wide class of arithmetic functions can be realized on the SRC-6, a 

reconfigurable computer, using polynomial approximations.  The function is realized by 

partitioning its domain into segments and then approximating the function in each 

segment by a quadratic polynomial.  This is not an iterative approach, and so it is faster 

than the CORDIC algorithm 

Two approximation methods are implemented.  In one method, non-uniform 

segments are used.  Here, larger segments can be used where the function is close to 

quadratic, while highly non-quadratic regions require smaller segments.  This approach 

minimizes the number of segments.  In the other method, uniform segments are used.  

Although more segments are needed than in the non-uniform method, the circuit is 

simpler. 

We show that accuracies of up to 33 bits are possible.  A pipelined circuit was 

built on the SRC-6 in two’s complement and floating point.  We also show an efficient 

algorithm for segmenting the function, which is faster than previous methods. 
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EXECUTIVE SUMMARY 

This thesis focuses on the high-speed implementation of arithmetic functions, 

such as sin( ),  ln( ) and 2xx xπ .  Meteorological computations, scientific calculations and 

graphics are applications that require fast mathematical computation. 

The CORDIC algorithm and Taylor series expansion are methods used to 

compute trigonometric functions.  The CORDIC algorithm is hardware efficient, precise, 

but iterative in design and therefore slow. 

In this thesis, we investigate a way to speed up mathematical computations by 

using piecewise quadratic approximations built on reconfigurable hardware.  The 

function is realized by partitioning its domain into segments and then approximating the 

function in each segment by a quadratic polynomial.  This is not an iterative approach, 

and so it is faster than the CORDIC algorithm 

The reconfigurable hardware used is the SRC-6E that is designed by SRC 

Computers in Colorado Springs, Colorado. 

The objectives were to:  

• Find an efficient algorithm to segment any numeric function using 

piecewise quadratic approximations. 

• Find an accurate segmentation (accurate when evaluated using the 

approximation polynomial) to any numeric function given an accuracy 

constraint in terms of number of bits. 

• Design pipelined hardware for the Numeric Function Generator (NFG) 

with a small pipeline depth (compared to what is currently available). 

• Design NFG to operate at 100MHz or faster on the FPGA. 

Segmentation is a preliminary step to provide a memory file that contains the 

number of segments for the numeric function, and each segment’s coefficients needed to 

compute the approximation polynomial. 



 xx

MATLAB is used to segment any function over a defined interval.  The 

MATLAB program needs to know the function, interval, desired accuracy and the 

number of discrete points in the interval.  The MATLAB built-in function, Polyfit, was 

used to compute the coefficients of the approximation polynomial, but analysis showed 

that the approximation computed using this method did not efficiently segment the 

function.  Polyfit is computationally fast, but results in an inefficiently segmented 

function. 

The Remez algorithm is used to efficiently segment the numeric function.  The 

Remez algorithm evenly distributes the approximation error on each segment, but is 

computationally intensive and slow.  Several methods were investigated to speed up the 

algorithm.  The best method to speed up the program, involved a hybrid of three methods. 

• Segment width estimation that requires the third derivative of the numeric 
function and the accuracy desired by the user. 

• Search algorithm similar to a binary search 

• Single stepping through points and testing to determine if the accuracy has 
been met. 

The program computes an estimated segment width and a metric is used to 

determine the quality of the estimation.  If the metric indicates the estimation quality is 

poor, then the program will use the search algorithm to get closer to the optimum width.  

In the final step, the program single steps through the points and tests each approximation 

to determine when the accuracy has been met.  When the segmentation of the function is 

complete, the optimum segment width and the associated coefficients are saved in a 

memory file for use in the NFG.   

The segmentation algorithm sped up the program tremendously.  If the domain is 

divided into over a million points, the original program would take at least one million 

tests to segment a function.  In each test, the program computes the coefficients and tests 

the polynomial against the numeric function to see if the accuracy is met.  When the  

speed up algorithm is used, the program requires much less than 0.1% of the number of 

tests than without the speed up.  Table 1 shows the results when 15 functions were tested. 

 



 xxi

The interval is shown in the second column, the speed up is shown in percentage format 

in the third column and the last column shows the number of segments.  The percentage 

is computed as: #   100
1,000,000
of tests× . 

 
Epsilon = 0.0000000596 = 2^-24.0.    N =  1000000 
 
   Function         Interval     %Of tests    # of Segments 
          2^x             [0,1]    0.00910           35 
         1./x             [1,2]    0.01020           50 
       sqrt(x)            [1,2]    0.00750           24 
     1/sqrt(x)            [1,2]    0.00720           36 
       log2(x)            [1,2]    0.00900           44 
        log(x)            [1,2]    0.00780           39 
     sin(pi*x)          [0,1/2]    0.01990           58 
     cos(pi*x)          [0,1/2]    0.01740           58 
     tan(pi*x)          [0,1/4]    0.01240           58 
sqrt(-log(x...      [1/512,1/4]    0.04070          163 
tan(pi*x).^...          [0,1/4]    0.02180           79 
-(x*log2(x)...  [1/256,1-1/256]    0.04710          183 
1/(1+exp(-x...            [0,1]    0.00920           20 
(1/sqrt(2*p...      [0,sqrt(2)]    0.01670           45 
   sin(exp(x))            [0,2]    0.07810          265 
******************************************************** 
Table 1. Speed-up in computation time for 15 functions (expressed as a percentage  

                        of the time needed when the domain is divided into 1,000,000 points) 
for

242ε −= . 

 

The NFG circuit consists of three multipliers, one 3-input adder, a segment 

indexing method and the memory that contains the approximation polynomials’ 

coefficients for each segment. 

Figure 1 is a block diagram that shows an overview of the NFG circuit. 



 xxii

 
Figure 1. Numeric function generator (NFG) architecture. 

 

Two approximation methods are implemented.  In one method, non-uniform 

segments are used.  Here, larger segments can be used where the function is close to 

quadratic, while highly non-quadratic regions require smaller segments.  This approach 

minimizes the number of segments.  In the other method, uniform segments are used.  

Although more segments are needed than in the non-uniform method, the circuit is 

simpler. 

We show that accuracies of up to 33 bits are possible.  A pipelined circuit was 

built on the SRC-6 in two’s complement and floating point.  The floating point 

implementation is easier to program via the interface that SRC provides.  A 



 xxiii

<subroutine>.mc file is a C-like file that is compiled into the hardware that resides on the 

FPGAs in the SRC Multi-Adaptive Programming (MAP) board.   

Using fixed point implementation produces a shorter pipeline depth 

(approximately 30% of the floating point pipeline depth), but requires more effort by the 

programmer to ensure the bits are aligned correctly.  In fixed point implementation, the 

bits are truncated instead of rounded.  This introduces errors in the intermediate 

computations that propagate to the final answer. 

The best solution to this problem is to build a user macro multiplier that takes care 

of the rounding and ensures the bits are aligned in the intermediate results of the 

polynomial computation. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT AND PURPOSE 
High-speed numeric computation has many applications including digital signal 

processing, graphics rendering, meteorological modeling, etc.  These applications require 

numeric calculations to be computed quickly.  In addition, the hardware may be required 

to compute large amounts of data or streaming data, which means long periods of time, 

may be expended performing the one type of computation.  Personal computers are 

general purpose and not specifically designed for numeric calculations alone; instead they 

provide the best compromise between speed and flexibility. 

The CORDIC algorithm can be very precise, but it has the disadvantage of being 

iterative and slow; the operations can take hundreds to thousands of clock cycles.  Each 

iteration in the CORDIC algorithm provides increased accuracy at the output [4]. 

It would be beneficial to have specialized and fast hardware for high speed 

numeric calculations.  Conventional methods for computing numeric functions include 

the CORDIC algorithm [2], [3], [4].  The problem is that specialized hardware is 

inflexible to computing different numeric functions as well as to changes in requirements 

or software updates.  However, specialized hardware is fast. 

A very fast method for numeric calculations is a look-up table [5], i.e. for every 

possible input, store the desired output of the numeric function.  The disadvantage of this 

approach is that a large amount of memory is needed. 

Field programmable devices have the advantage that one can quickly design, test 

and replace hardware functionality.  This is compared to traditional methods, whereby a 

prototype is designed and simulated in software, prototyped on a prototyping board, and 

then sent to a manufacturer.  This is expensive and time consuming, especially if there 

are changes required.   

FPGA technology has improved to the point that a large amount of logic is 

available.  If we have a few divergent needs that may require particularly heavy-

computation that can best be solved by specialized hardware, we can use the FPGA 

devices to implement a specialized hardware design.  Once the task has been completed, 
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the hardware can be reconfigured for other uses.  The NFG we will discuss uses this 

principle on the SRC-6 computer system. 

Lee, Wayne, Villasenor and Cheung [6], used a cascade of AND and OR gates to 

calculate segment addresses in a non-uniform segmentation implementation for hardware 

function evaluation.  This circuit is useful for a limited class of functions.  Sasao, Butler 

and Riedel [5] present a universal circuit that can cater to a wider class of functions. 

Sasao, Butler and Riedel [5] have shown that elementary and non-elementary 

numeric functions can be computed quickly and accurately using a piecewise linear 

approximation method.  This method provides some advantages over the memory method 

and the CORDIC algorithm.  Less memory is required than a look-up table because the 

numeric function is segmented and the coefficients of the piecewise linear approximation 

are stored vice storing every possible input value and its corresponding output.  The other 

advantage is that the accuracy can be determined at the outset and therefore is faster than 

the CORDIC algorithm; especially at higher accuracy when the CORDIC must go 

through several iterations to attain the desired accuracy.  One more advantage to this 

approach is that it allows for one hardware design, with the memory contents being 

changed to handle different numeric functions [1]. 

This thesis investigates a piecewise quadratic implementation.  The quadratic 

implementation requires fewer segments than the linear implementation to compute the 

same numeric functions to the same accuracy.  This also means that the memory required 

is less than that required to implement a piecewise linear approximation NFG.



 3

B. IMPLEMENTATION OVERVIEW 

Figure 1 shows of the hardware required to build the NFG using quadratic 

approximation.  The NFG architecture requires three multipliers.  Each requires 

significant logic and causes significant delay. 

 

 

Figure 1. Numeric function generator (NFG) architecture. 
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Table 1 shows the suite of functions used to test and design the NFG.  Unlike 

logic or software design, there is no set of benchmarks.  The specific functions have been 

chosen because they have appeared in previous papers on this subject [1], [5], [8], 

[9],[11], [12], [15]. 

 

Interval  

# 

Function 

f(x) x f(x) 

1 2x  [ ]0,1  [ ]1, 2  

2 1/x [ ]1, 2  [ ]1 2,1  
3 x  [ ]1, 2  0, 2⎡ ⎤

⎣ ⎦  
4 1/ x  [ ]1, 2  1 2 ,1⎡ ⎤

⎣ ⎦  
5 2log ( )x  [ ]1, 2  [ ]0,1  
6 ln(x) [ ]1, 2  

[0,ln2] 

7 sin( )xπ  [ ]0,1 2  [ ]0,1  
8 cos( )xπ  [ ]0,1 2  [ ]0,1  
9 tan( )xπ  [ ]0,1 4  [ ]0,1  
10 ln( )x−  [ ]1 512,1 4  ( ) ( )ln 1 4 , ln 1 512⎡ ⎤− −⎣ ⎦

11 2tan ( ) 1xπ +  [ ]0,1 4  [ ]1, 2  
12 -(x log2x + (1-x) log2(1-x)) [ ]1 256,1 1 256−  [ ]0,1  
13 1

1 xe−+  
[ ]0,1  1

11 2,
1 e−

⎡ ⎤
⎢ ⎥+⎣ ⎦  

14 2

21
2

x

e
π

−

 

0, 2⎡ ⎤
⎣ ⎦  1

1 1,
2 2 eπ π

⎡ ⎤
⎢ ⎥⎣ ⎦  

15 sin( )xe  [0,2] [1,-1] 

Table 1. Suite of numeric functions and their domains. 
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C. THESIS ORGANIZATION 

This thesis is organized into six chapters.  Chapter I is the introduction, Chapter II 

covers the segmentation of numeric functions and the methods used for computing the 

approximation of the functions; this includes the discussion on how the coefficients were 

computed and how the memory files were used in the NFG.  These programs were 

designed in MATLAB [7].  In Chapter III, the circuit description design is covered.  

Chapter IV introduces the SRC computer architecture.  The experimental results are 

discussed in Chapter V.  The summary and suggested future work is discussed in Chapter 

VI. 
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II. FUNCTION APPROXIMATION 

The NFG approximates the realized function by polynomial.  In a typical 

realization, many polynomials are used.  A segment is a sub-domain in the interval of 

approximation where one polynomial is used to approximate the function.  In this thesis 

quadratic polynomials are used.  The benefit of using a polynomial approximation is that 

only one hardware design is required to realize a multitude of functions.  The only change 

required to the hardware is to change the specific endpoints of the segmentation of the 

functions to be realized and the associated coefficients.  The segmentation endpoint and 

coefficients are generated in MATLAB and are stored in a memory file.  Segmentation is 

described in detail below.   

The realized functions are approximated and the output of the hardware is only as 

accurate as the user-defined precision. The approximation error isε .  The exact function 

is evaluated for various values in the domain.  The polynomial that is used to 

approximate the function is evaluated for the same values in the domain.  The difference 

between these two results is the approximation errorε .  The approximation errorε  is the 

constraint used to keep the approximation in check. 

The approximation errorε , directly impacts how many segments are required and 

therefore dictates how much memory is used to store the coefficients.  Small values 

require many segments. 

 

A. QUADRATIC VS LINEAR 

Nagayama, Sasao and Butler [8] showed that using quadratic approximations in 

the NFG requires an average of only 4% of the memory required when using linear 

approximations.  This gives the motivation to pursue quadratic approximation following 

the work on linear approximation that was performed by Mack [1]. 

In Table 2, the number of segments required for different accuracies is tabulated 

for both quadratic approximation and linear approximation.  A column is also included 

that shows the ratio of quadratic to linear segments required.   
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172ε −=  242ε −=  332ε −=   

 

Function 
Segments 

Quad/Lin 

 

% 

Segments

Quad/Lin

 

% 

Segments 

Quad/Lin 

 

% 

2x  7/75 9.33 35/849 4.12 278/19008 1.46

1/x 10/75 13.33 50/849 5.89 400/18996 2.11

x  5/35 14.29 24/388 6.19 189/8729 2.17

1/ x  8/50 16.00 36/565 6.37 288/12684 2.27

log2(x) 9/76 11.84 44/853 5.16 351/19097 1.84

ln(x) 8/63 12.70 39/710 5.49 311/15927 1.95

sin( )xπ  12/109 11.01 58/1227 4.73 461/27361 1.68

cos( )xπ  12/109 11.01 58/1227 4.73 459/27361 1.68

tan( )xπ  12/73 16.44 58/822 7.06 459/18371 2.50

ln( )x−  
33/207 15.94 163/2356 6.92 1312/47188 2.78

2tan ( ) 1xπ +  16/152 10.53 79/1721 4.59 631/38087 1.65

-(x log2x + (1-x) log2(1-

x)) 

37/314 11.78 183/3556 5.15 1459/76334 1.91

1
1 xe−+  

4/20 20.00 20/226 8.85 158/5087 3.11

2

21
2

x

e
π

−

 

9/53 16.98 45/595 7.56 357/13312 2.68

sin( )xe  54/449 11.80 265/5099 5.20 2121/101065 2.10

Table 2. Segmentation required for linear and quadratic approximations. 

 

To calculate the memory required for a single segment, one needs to take into 

account that memory for linear approximations only requires two quantities (slope and 

intercept) and memory for quadratic approximation requires three quantities.  That is a 

50% increase in memory requirements for a single segment when compared to linear.  
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However, the sheer difference in number of segments required for quadratic vice linear, 

more than counterbalances for the increase in memory requirements  

Table 2 shows that quadratic approximations can cover more functions with fewer 

segments than linear approximations and on average, quadratic approximations take up 

only 4% of the memory required to represent the same function when using linear 

approximations [8]. 

 

B. SEGMENTATION 
To evaluate a numeric function using polynomial approximation, we need to 

segment the domain of the numeric function such that each segment has one set of 

coefficients that evaluate to the polynomial approximation of the given numeric function.  

The polynomial approximation needs to satisfy the user defined ε  such that any value in 

the domain that is evaluated using the polynomial will produce an output f(x) that has an 

error no greater thanε in magnitude.  The segmentation is performed in MATLAB 

routines. 

Segmentation can be performed using either uniform or non-uniform segments. 

The coefficients of the approximation polynomial can be computed using Polyfit [7], 

which is a built-in MATLAB function or the Chebyshev and the Remez [13] algorithm 

which is a user function.  We will discuss these approaches in more detail. 

 

1. Uniform and Non-Uniform Segmentation 
There are two general methods used in approximating a function; uniform and 

non-uniform segmentation.  Different functions behave differently when segmented using 

uniform or non-uniform segmentation.  Non-uniform segmentation allows the user to take 

advantage of functions that have both rapidly changing and non-rapidly changing 

sections.  When functions have sections of high curvature, non-uniform segmentation can 

create smaller segments to ensure the polynomial approximation does not exceedε .  The 

more quadratic or linear the function is, the better the polynomial approximation can fit a 

quadratic polynomial to it.  As a result, segments are longer in regions where the function 



 10

is linear or quadratic.  The goal is to achieve the fewest segments possible and yet 

achieve the approximation error specified by the user.  Figure 2 shows the non-uniform 

segmentation of ln( )x− using ε = 162− (accurate to 16 binary bits). This function 

illustrates the advantage of non-uniform segmentation.  The smaller segments are located 

at the beginning of the domain and the larger segments are at the end.  

 

 

Figure 2. Quadratic segmentation of ln( )x− shows the difference in the size of 
segments due to curvature of the function. 

 

As mentioned above, the error associated with this segmentation should not 

exceed 162ε −= .  Figure 3 shows the error across the interval of approximation when non-

uniform segmentation is used.  For all but the last segment, the maximum absolute error 

is the same (about 16.0112− ).  As shown in Figure 3, the error does not exceed ε  anywhere.  

Note that the error in the last (right most) segment is much less than in all other segments.  

This is because the last segment is truncated by the boundary of the domain interval 

before the algorithm has a chance to maximize the size of the segment. 
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Figure 3. Segment error of ln( )x− when ε = 162− . 

 

Figure 4, shows the approximation error in the case of this same function when 

uniform segmentation is applied1.  To achieve uniform segmentation within the same 

approximation error specification i.e. 162− , we are required to use the width of the 

narrowest segment which in this case is the very first segment.  
 

                                                 
1 Because a large number of segments are required, the line width occupies the whole of the figure, 

making it appear completely solid. 
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Figure 4. Quadratic uniform segmentation for ln( )x−  when limited when ε = 162− . 

 

The error function for a uniform segmentation looks different from that of the 

non-uniform segmentation.  The error for uniform segmentation is maximum i.e. ε  is 

attained in the most limiting segment.  However, when looking at the other segments the 

error does not reachε .  Therefore a tapered effect is observed.  To best demonstrate this 

effect, we shall use a less “dramatic” function than ln( )x− .  Instead cos( )xπ is used in 

Figure 5 and Figure 6 to show the difference in the error between the uniform and non-

uniform segmentation. 

Below in Figure 5, the error is tapered showing that the earlier segments don’t 

take full advantage of the entire segment because they have been limited by the smallest 

segment, located at the end of the domain for the cos( )xπ  function.   

In Figure 6 however, you can see that non-uniform segmentation has taken full 

advantage of all the space and has fewer segments to represent the same function.  This is 

the advantage of the non-uniform segmentation over uniform segmentation. 
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Figure 5. Uniform segmentation error for cos( )xπ  when limited byε = 172− . 

 

Figure 6. Error for non-uniform segmentation for cos( )xπ  when limited by ε = 172− . 
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In the segmentation of a numeric function, a user interface was designed in a 

MATLAB program to get the user’s choices.  The user interface allows the user to select 

which function he/she would like to segment and allows the user to select the number of 

points (to subdivide the domain),ε , and whether uniform or non-uniform segmentation is 

used. 

If the user selects non-uniform segmentation, the interface looks like that shown 

in Figure 7. 

 

 

Figure 7. Quadratic approximation user-interface when non-uniform segmentation has 
been used. 
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If the user selects non-uniform segmentation, the user interface allows the user to 

select whether he/she wants to specify ε  or if they would like to use a fixed number of 

segments instead.  The new user interface looks like that shown in Figure 8. 

 

Figure 8. Quadratic approximation user-interface when uniform segmentation has been 
specified. 

 

a. Summary of Advantages and Disadvantages of Uniform and 
Non-Uniform Segmentation 

Table 3 shows a summary of the advantages and disadvantages between 

uniform and non-uniform segmentation.   
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 Advantages Disadvantages 

Uniform 
Segmentation 

• No need for segment index 
encoder 

• Less complex hardware 

• High curvature functions 
require many segments 
(wastes memory) 

Non-Uniform 
Segmentation 

• High curvature functions with 
segments that are as wide as 
possible (Saves on memory) 

• Requires segment index 
encoder 

• More complex design 

Table 3. Summary of Advantages and Disadvantages of Uniform and Non-uniform 
Segmentation. 

 

2. Segment Coefficients Using Polyfit and the Remez Algorithm 
To obtain the coefficients of a segment when segmenting any function, several 

different algorithms may be used.  In [5], Sasao et al use the Douglas-Peucker algorithm 

[10] for segmenting and providing linear approximations to the functions.  However this 

algorithm does not yield an optimum segmentation [11]. 

The initial work in this thesis used the Polyfit [7] function, available in 

MATLAB, to find the coefficients.  Polyfit is computationally efficient and has been 

optimized for MATLAB.  It requires a set of data points that represent the function that 

the user intends to best fit a polynomial of order n.  In this thesis, we are working with 

quadratic functions and therefore use n = 2.  Polyfit finds the coefficients to the 

approximating polynomial in a least squares sense [7] and returns a row vector with the 

coefficients of the polynomial.  Least squares approximations minimize the average error 

on the interval selected.  However, the worst-case error can be large.  That is, it yields an 

average error that satisfies the constraint given, i.e.ε , but the worst-case errors may still 

exceed the constraint. 

In analyzing the approximation polynomials produced from the coefficients 

provided by the Polyfit function, the graphs showing the error over each segment had the 

largest error at the begin and end points of the segment as can be seen in Figure 9 below.   
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This graph shows the weakness in using least squares approximation methods like 

that used by Polyfit.  Our goal is to reduce the number of segments for the given function 

in order to restrain the maximum error to no greater thanε .  Therefore, Polyfit was 

abandoned and instead the Remez algorithm [13] was used. 

The Remez algorithm uses a method of approximation that minimizes the worst-

case error.  It belongs to the set of least maximum approximations (minimax 

approximations).  The program ensures that there was no point in the interval where the 

error found by evaluating the difference between the approximation polynomial and the 

real function was greater than the constraint given. 

 

 

Figure 9. Quadratic non-uniform segmentation approximation error using Polyfit. 

 

The advantage of the Remez algorithm is to evenly distribute the error over the 

segment so that the maximum error is constrained byε .  This can be clearly observed by 



 18

comparing Figure 9 and Figure 10.  The function, cos( )xπ  with 172ε −= , was used in 

both cases.  Notice Polyfit needed 14 segments while Remez only required 12 segments.  

Both figures display only the first 4 segments.  The difference is readily noticeable.  Thus 

the Remez covers a larger portion of the domain in the four segments than Polyfit.  As a 

result, it tends to reduce the number of segments.  In the Remez implementation, the 4th 

segment extends right past 0.21 in the x domain, while Polyfit barely makes it to 1.9. 

The Remez algorithm attempts to achieve the minimax degree-n polynomial 

approximation of the given function on a defined interval.  In the program that was used 

for this thesis, the interval is iteratively revised and the Remez algorithm is repeatedly 

called until a degree-2 polynomial approximation that satisfies the constraint is achieved.  

The process is constrained byε , and the interval is increased or decreased until the 

optimum segment endpoint lies between the current point and the next point on the 

domain interval. 

 

 

Figure 10. Quadratic non-uniform segmentation approximation error using Remez. (Only 
the first four segments are shown). 
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The Remez algorithm requires much more computational time and effort than the 

Polyfit function (which is already optimized for MATLAB).  In general, for an f with an 

interval [a, b], there are several polynomials, but only one polynomial *p  is the minimax 

degree-n approximation.  This approximation will have at least n+2 points, as described 

in inequality (0.1) that evaluate to yield an error that will be maximum magnitude and 

will alternate in sign.   

 
 0 1 1... na x x x b+≤ < < < <  (0.1) 
 

The begin point and end point of the interval are included.  In the case of 

quadratic approximations, a degree-2 polynomial can expect at least 4 points where the 

error will be maximum and will alternate in sign, as seen in Figure 10.   The Remez 

algorithm is iterative and requires an estimate of the point where the error is maximum.   

The Chebyshev approximation is better than most other approximation algorithms in 

obtaining a polynomial close to the minimax polynomial *p .  When compared to Taylor 

Series, Legrendre, Chebyshev provides a better estimate in most cases.  For this reason, 

Chebyshev approximation is used to provide a set of starting points in the Remez 

algorithm in this thesis.  The previous discussion is described in more detail in [13]. 

The function ChebyRemez in Appendix B was written to implement the Remez 

algorithm with an initial set of points where the error is maximum.  Using Remez slowed 

down the program written to compute the coefficients; especially when higher accuracy 

was desired or in general, when the x domain interval was assigned more points; N.  To 

neutralize this effect, different algorithms were investigated to speed up the program.  

These are discussed further in the section three below.  

 

3. Algorithms Investigated to Speed-Up the Segmentation 

In the program proposed by Sasao, Butler and Riedel [5], the domain was divided 

into points and segmentation was determined by brute force, i.e. point by point to 

determine the required size of the segment.  To attain high accuracy, the domain needs to 



 20

be subdivided into hundreds of thousands and even millions of points.  This results in 

slow execution.  We investigate ways to speed up the segmentation. 

 

a. Brute Force 
The lower value of the domain is established as the begin point.  The 

program steps through each point computing the minimax degree-2 polynomial 

approximation of the function.  When evaluating any segment, (even two consecutive 

points), the program creates 1000 points between the given begin point and the end point.  

This ensures enough points for the program to locate the points in the segment where the 

maximum and minimum error is achieved, as described above.  The coefficients required 

are then computed and next, the approximated polynomial is used to evaluate all the 

points in the current segment.  These values are compared with the actual values from 

computing the real function.  The maximum error is determined.  If the error is smaller 

thanε , the program steps one point to the right and repeats the process.  Eventually, the 

polynomial approximation will produce an approximation where the maximum error 

exceedsε .  At this point the program steps back one step and records the end point of the 

segment.  For a typical segmentation with N =1,000,000, this program takes much time.  

N is defined as the number of points on the entire interval of the domain, i.e. number of 

points on the interval [a, b]. 

 

b. Binary Search 

Binary search is really a two step process: 

1.  Locate:  A point close to the optimum point is determined. 

2.  Pinpoint: Use brute force to move up to the optimum point. 

In step 1, given a function f, and an interval [a, b], starting on the left at a, 

the lower value of the domain is established as the begin point and the end point is set to 

b.  This is the entire domain interval over which the program computes the minimax 

degree-2 polynomial approximation.  Given the constraint,ε , the program tests the error 

of the approximation and if the error is greater than the constraint, the program divides 
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the interval into two equal parts and decreases the proposed interval.  Figure 11 shows a 

graphic representation of the first 4 iterations.  These iterations are part of step 1; Locate.   

The optimum is endpoint of the first segment is labeled 0x .  Figure 11 

shows the first iteration, interval [a, b] is tested to determine if it is a good segment size.  

Since it is too large, the interval is divided into 2. The new interval is [a, 

1st 0 proposed x ].  The process is repeated and the approximation of this new proposed 

segment is tested against the constraint.  This is an iterative process that decreases the 

width of the segment.  The next proposed segment is [a, 2nd
0 proposed x ] as shown in 

Figure 11.  Again the segment is tested.  If the constraint is not met, the segment is 

decreased by 1/2.   

 

 

Figure 11. Shows the interval and segmentation notation. 
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The process is repeated until the constraint is met.  In Figure 11, the 

constraint is met on the fourth try and results in a proposed segment [a, 3rd 0proposed x ].  

Once below the optimum end point, the program increases the proposed segment 

endpoint until the constraint is exceeded.  This means the segment is increased by half of 

the last width used to decrease the proposed segments.  In Figure 11, the last width was 

2nd
0 proposed x  - 3rd 0proposed x .  The process of increasing and decreasing the 

segment size by widths that are halved per iteration is repeated until the width being used 

to increment or decrement is 1.  At this point, we are done with step 1 (Locate) and we 

move to step 2.  Step 2 uses brute force to Pinpoint the optimum segment. 

The binary search finds the actual segment end point in approximately s 

steps as described by inequality (0.2) where npts is the number of points in the initial 

proposed segment. 

 

 21 log ( )s npts≥ +  (0.2) 

 

Compared to the number of steps required by brute force, this is a 

dramatic improvement.  Consider N=1,000,000, then the binary search for the first 

segment should yield around 21 steps to find the optimum segment end point x0; npts in 

this case is 1,000,000.  The number of steps required to reach the segment end point is 

reduced as the program progresses to the end of the domain interval.  This is because the 

argument npts in equation (0.2) decreases.  In Table 4 the binary search takes 924 calls to 

the function chebyRemz as opposed to the brute force method which makes 1,000,000 

calls.   

The number of calls to the user programmed MATLAB function 

chebyRemz is used as a metric for two reasons: (1) the code for chebyRemz takes longer 

to execute than any other piece of code in the program and (2) the number of calls to the 

user programmed MATLAB function chebyRemz will vary depending on what numeric 

function is being segmented.  Appendix D shows a copy of profile results [7] that shows 
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the execution time of each function.  The goal is to minimize the number of calls to 

chebyRemz, thus speeding up the program. 

Appendix A.2.1, part b shows the portion of the program that applies this 

method.  The file name is varQuadApproxBinSearch.m. 

Table 4 shows the number of calls to the function chebyRemez for 9 

different algorithms that were investigated to speedup the segmentation.  The first 

column is the number of points used to subdivide the domain.  The next 9 columns are 

the different algorithms and the results.  Only one function and one accuracy was used; 

ln( )x− and 172ε −=  respectively. 

 

 

N 

Binary 

Search 

 

Thirds 

 

Ratio

 

1 Est 

 

2Est 

 

3Est 

Avg 

1Est 

Avg 

3Est 

Hybrid w/ 

Thirds & 

3Avg *1.05

1 M 924 764 1143 65400 3369 1903 5972 1960 98 

100 K 764 640 699 6620 430 293 697 298 98 

10 K 649 529 563 739 132 127 166 129 103 

1 K 488 429 450 181 114 120 128 122 117 

Table 4. Various methods show the number of calls to the function chebyRemz; 
segmentation of ln( )x− , 172ε −= and various values of N. 

 
c. Divide by Thirds 

A second program was implemented that applied the same principle as 

binary search, however instead of taking off half of the width, the program took off two 

thirds (i.e. divide the remaining width by three).  Therefore this method is also a two step 

process:  

1.  Locate:  A point close to the optimum point is determined. 

2.  Pinpoint:  Use brute force to move up to the optimum point. 
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Figure 12 shows the segmentation for the 5th segment.  The domain 

interval is [a, b], we start the segmentation of segment 5 at the end the 4th segment; 4x .   

Step 1: Denote the unsegmented part of the interval as [ 4x , b].  A call to 

the function chebyRemez is used to generate a quadratic approximation.  This 

approximation is tested to see if any points exceed the constraintε .  If the constraint is 

met, then we have the final segment. Exit.   

Step 2: Divide the initial width by three; the new value is 1/3 of the initial 

width.  This is labeled as L1 in Figure 12.  L1 is now the new proposed segment width 

and chebyRemez is called to establish a quadratic approximation for the interval.  The 

point labeled 5x  is the optimum segment endpoint.  In Figure 12, L1 is clearly not the 

optimal width.   

Step 3: The program divides L1 by three and the result is L2.  A quadratic 

approximation is computed to test the approximation error against the constraint.  Since 

L2 is below the optimum point, we initialize a new variable, delta, to be used to keep 

track of the width which is being added or subtracted to the proposed width of the 

segment.  delta is 1/3 of L2.  

Step 4: Increase L2 by 1/3 of L2.  This results in L3, which is tested to 

determine the approximation error.  In Figure 12, L3 is still short of the optimum 

segment. 

Step 5: Increase L3 by the same delta, i.e. 1/3 of L2.  The approximation 

is computed for the new proposed segment of width L4, and the approximation error 

tested against the constraint.  This time we have exceeded the optimum endpoint, i.e. 

approximation error is greater thanε .  In Figure 12, L4 is larger than the optimum point.   

Step 6:  Since we have exceeded the optimum segment, we now reduce the 

variable delta to 1/3 of delta.  This value is the used to reduce L4 to a narrower width, i.e. 

L5.  In Figure 12, L5 is still wider than the optimum width. 

When the increment width is 2 or less, Locate is complete and the program 

goes to Pinpoint.  The process stops when two adjacent points straddle the optimum 
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segment endpoint.  The lower value is 5x , the segment endpoint for the program.  Since 

the domain has been divided into discrete points, 5x  is just shy of the optimum point.  

The approximation error of the new segment meets the constraint; however, the next 

point to the right of the optimum point has an approximation error that exceedsε . 

The results showed an improvement over binary search.  Table 4 shows 

that the method of Thirds called the function chebyRemez 764 times as opposed to the 

binary search method that took 924 calls to achieve the same segmentation. 

Other values besides one-third were tested, but they did not perform 

consistently better.  Appendix A.2.1, part c shows the portion of the program that applies 

this method.  The file name is varQuadApproxTHIRD.m 

 

Figure 12. Visual aid for description of divide by thirds algorithm. 

 

d. Increment by Ratio Numbers 
In this method, the width of the proposed segment is increased or 

decreased by multiplying the current proposed width by a series of fixed values.  We 

have the same 2-step process of Locate and Pinpoint. 
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In Locate, the proposed width is the entire remaining width of the domain 

interval [a, b] i.e. the width from point a to point b.  The width is tested to see if the 

constraint has been exceeded or not; except for the last segment, the width will always 

exceed the optimum segment because the entire remainder of the interval is used per 

iteration.  As an example, consider that the first segment [a, 0x ] is already established 

(segment [a, 0x ] as shown in Figure 11).  Next, the program needs to compute the second 

segment.  The program will establish a proposed width [ 0x , b].  This is the entire 

remainder of the interval.  The ratios are applied to the width [ 0x , b].  The result is 

shorter widths that are tested until the constraint is met.  This method is similar to the 

method “Divide by Thirds,” except that, a set of ratios are applied to the 

increment/decrement width. 

Table 4 shows the implementation of increment by ratio numbers took 

1143 calls to chebyRemz function.  Appendix A.2.1, part d shows the portion of the 

program that applies this method.  The file name is varQuadApproxRatio.m 

 

e. Estimated Segment Widths (1, 2, 3, more and Average) 

Again, the 2-step process of Locate followed by Pinpoint is applied here.  

In Locate, an estimate of the segment is calculated. 

Equation (0.3) is adapted from [15] to compute segment estimates for 

quadratic approximations.  The derivation is in Appendix F.  The accuracyε , and the 

third derivative of the function used to estimate the width of the segments.  The proposed 

segment widths are tested and the program falls back on the brute force method after the 

initial estimate.  This yields a large improvement from using the brute force method 

alone. 

 

1
3

3

3
max

34EstSegLen
d y

dx

ε
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 (0.3) 
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One Estimate: In Table 4, when one estimate is used, i.e. the third 

derivative is computed at x = begin point of the segment.  The estimated width is added to 

the begin point and the proposed segment is tested.  The brute force method takes over 

and single steps to the optimum segment width.  The result was 65,400 calls to 

chebyRemez. 

Two Estimates: The first estimated width is calculated using equation 

(0.3) and the third derivative is computed at the begin point of the segment.  The resulting 

estimated width is added to the begin point and the resulting endpoint is used in equation 

(0.3) to make a second estimated width using the third derivative at the endpoint.  The 

average of these two widths is the estimated width that is applied to the begin point to 

obtain a proposed endpoint.  Again, the program uses the brute force method to complete 

the segmentation.  This method improved the performance and took 3369 calls to 

chebyRemez. 

Three Estimates: Two estimates are computed as described above.  The 

result is divided in half the half-way point is used to compute the third estimate.  The 

third estimate is averaged with the other two estimated widths to obtain the proposed 

segment width.  As in the other two cases, the brute force method is then applied to 

complete the segmentation.  Even further improvement was achieved; 1903 calls to 

chebyRemez. 

Estimates with more than three widths were tested, but the performance 

began to degrade.  So, an average was applied to the segments. 

Average of one estimate: In the average method, one estimate was 

computed from the begin point.  The estimate was used to define a proposed segment.  

The entire set of points on this proposed width are evaluated using equation(0.3).  Then, 

the mean of the resulting vector of estimated widths was computed and used as the 

proposed segment width.  The result appeared to be similar (not exact) to taking two 

estimates (when multiple functions are tested, on average the results of two estimates and 

the average method are similar).  Table 4 shows that this method called chebyRemez 5972 

times. 
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Average of three estimates: This method is a combination of taking three 

estimates as described above.  All the points on the proposed width are evaluated with 

equation (0.3).  This creates a vector of proposed estimates.  Next evaluate the mean of 

the vector of proposed estimates to get one estimate.  The results of this method are 

similar to taking three estimates.  However, since we evaluate all the points on the 

interval, it takes slightly longer. 

In [15], a comparison was made to show the benefit of three estimates 

over two estimates and one estimate in the case of linear approximation.  While it is not 

discussed in [15], one estimate was computed in the linear approximation and the 

resulting proposed width was used to compute the mean of all the estimates obtained 

from evaluating all the points on the proposed width.  The mean of the estimates was 

similar to taking the mean of just two estimates (begin point and proposed endpoint).  In 

the quadratic case, the same method yielded results that were comparable to taking the 

mean of two estimates, just like the results in the linear case.  However, when the mean 

of three estimates was used to define a proposed segment and the average of all the 

estimates on the newly proposed width was computed, the result was very close to taking 

the mean of just three estimates.   

Closer analysis revealed that, in many cases, the average of all the points 

worked well and sometimes even better than just the mean of three individual estimates.  

The results appear in Table 5.  The first column is the suite of numeric functions 

represented by a number; the focus should be on the comparison, not any particular 

numeric function.  The second column is just the three estimates as described above, the 

third column is the average of the estimates calculated using all points on the proposed 

segment.  The fourth column is the difference between the second and third column.  The 

last column is a method described in part f; Hybrid of Thirds and three Estimates.  Table 

5 shows that taking the average of all estimates on the segment has a slight advantage 

over taking the average of just three single estimates.  Therefore, looking back, Table 4 

used only one numeric function, and that made it appear that the method of 3Avg was 

slightly worse, whereas in Table 5, we can see that the when applied to the entire suite of 

functions, the average over the entire segment (which was selected after three estimates), 
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was slightly better.  The values at the bottom are the sum of all the calls to the 

approximating algorithm, chebyRemez, which was the metric used to determine the 

comparative speed of the program. 

 

Function by Numbers 3Est 3Avg Comparison 

(3Est – 3Avg) 

 *1.05 Hyb 3Avg 

1 23 29 -6  20 

2 93 103 -10  29 

3 148 146 2  14 

4 133 145 -12  23 

5 83 84 -1  26 

6 90 95 -5  23 

7 266 87 179  59 

8 6326 6210 116  61 

9 128 92 36  35 

10 293 298 -5  98 

11 6233 6203 30  65 

12 925 581 344  172 

13 230 81 149  39 

14 7378 7203 175  95 

15 650 963 -313  222 

SUM 22999 22320 679  981 

Table 5. Comparison of “3 estimates”, mean of all estimates computed on proposed 
segment that was calculated after taking 3 estimates; “3 average” and a hybrid 

that exaggerates the approximation error by 5%.  All cases, N=100,000 
and 172ε −= . 

 

The next question is; should we use just three estimates or should we use 

the average of all the estimates computed from all the points on a proposed segment?  

The difference is small.  The impact of the additional code that takes the average of an 
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entire segment did not exceed the time taken by chebyRemez and did not significantly 

impact the computing time of the program.   

The additional code does not take add significantly to the program and 

since it has advantages, we kept the program that averages the estimates over the entire 

segment.  The analysis to support that decision follows: Consider the small section of a 

Profile report from MATLAB that is similar to the one in Appendix D.   

Table 6 shows the total time for varQuadApprox implemented with only 

three estimates.  The time for the function, including all child functions is 44.438s.  These 

values come from running the program with the function ( )2 2- x log x + (1-x) log (1-x) , 

N=1,000,000 and 332ε −= . 

 

Profile Summary 
Generated 21-Aug-2007 22:25:40 

Function name Calls Total Time Self Time* Total Time Plot 
(dark band = self time) 

multipleQuadApprox 1 44.906 s 0.156 s  

varQuadApproxHyb3EstThird 1460 44.438 s 3.516 s  

chebyRemz 13187 39.156 s 16.406 s  

inline.subsref 87050 20.031 s 3.031 s  

inlineeval 87202 17.031 s 17.031 s  

polyval 69483 3.828 s 3.359 s  

twosComp 5840 3.000 s 0.188 s  
 

Table 6. Profile Report for ( )2 2- x log x + (1-x) log (1-x) , N=1,000,000 and 332ε −= .  Shows 
44.438s for the varQuadApprox function that averages only three estimates. 

 

The same function and parameters were run with the additional code that 

takes the average of all estimates over the entire segment.  The results appear in Table 7.  

The total time for varQuadApprox, and all its child functions is 20.078s.  The additional 
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code to compute the averages took 0.061s which translates to less than 1% of the time 

spent in varQuadApprox.  Therefore, the additional code is negligible.  This particular 

function clearly shows the advantage of taking the average; greater than 50% 

improvement (44s to 20s). 

It should be noted, that, in a few cases, the improvement was not as 

dramatic and in ln( )x− , the average code performed worse by 20% (20 seconds to 25 

seconds).  However, on average, it was better to take the average over the entire segment. 

A slightly different problem; what happens when the third derivative is 

zero?  This presents a problem in the computation of estimates (the third derivative is in 

the denominator of equation(0.3)).  Therefore, one way to tackle the problem is to find 

the smallest non-zero, third derivative magnitude over the entire domain interval [a, b] 

and use that to calculate the largest expected segment.  This large segment is substituted 

whenever the third derivative is zero.  In many cases, the resulting estimate is a poor 

estimate of the segment size, and tends to slow down the program when encountered.  

Therefore, a hybrid of the best segmentation processes was used and is described below.   
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varQuadApproxHyb3AvgThird (1462 calls, 20.078 sec) 
 

Parents (calling functions) 
Filename File Type Calls

multipleQuadApprox M-function 1462
Lines where the most time was spent 

Line Number Code Calls Total 
Time 

% 
Time 

Time 
Plot 

98 [p,oscil,errP] = 
chebyRemz(fct... 1462 4.531 s 22.6%  

194 [p,oscil,errP] = 
chebyRemz(fct... 994 3.375 s 16.8%  

209 [p,oscil,errP] = 
chebyRemz(fct... 1001 3.141 s 15.6%  

182 [p,oscil,errP] = 
chebyRemz(fct... 945 2.859 s 14.2%  

133 [p,oscil,errP] = 
chebyRemz(fct... 1010 2.719 s 13.5%  

Other lines & 
overhead     3.453 s 17.2%  

Totals     20.078 s 100%   
. 
. 
. 

< 0.01    1461   79         if len+indx > length(x_pts)  
                 80             len = length(x_pts) - indx; 
                 81         end 
  0.61    1461   82         Der3Intr = f3der(x_pts(indx:indx+len));     % Get 
  0.03    1461   83         AV3DER   = mean(Der3Intr);                  %  
< 0.01    1461   84         x_range  = 4*(epsilon*3/abs(AV3DER))^(1/3); % Get 
< 0.01    1461   85         len  = round(x_range/(x_ptsRange)*length(x_pts)); 
< 0.01    1461   86         if len+indx > length(x_pts)  

Table 7. Profile Report for ( )2 2- x log x + (1-x) log (1-x) , N=1,000,000 and 332ε −= .  Shows 
20.078s for the varQuadApprox function and 0.061s for the average of all the 

estimates on the entire segment. 

 

f. Hybrid of Thirds and 3 Estimates 

In this algorithm, we take advantage of the strengths of two programs.  As 

with the other algorithms, we have a Locate and Pinpoint step.  However, Locate is a 

combination of Divide by Thirds and 3 Estimates.  
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We know that ε  is the constraint and that when the approximation is 

good, then a ratio of the maximum approximation error to ε  should be very close to 1.0.  

This ratio can be used as a metric to determine the quality of our estimate.  If the ratio is 

much larger than 1.0, because the segment is too large, then our estimate is too wide.  If it 

is much less than 1.0, our estimate is too small. 

To take advantage of the ratio of approximation error andε , the program 

first takes the average of the three estimates and using the estimated width, computes the 

approximation error.  If the ratio of the approximation error to ε  is large (greater than 

1.002) or small (less than 0.9) the program takes the estimated width as a starting width.  

The program then takes a small fraction of that width (5%) and stores it in a variable that 

is used to decrease or increase the proposed width.  The algorithm used is Divide by 

Thirds.   

In addition to the steps taken above, the program was modified to 

exaggerate the error calculated from the approximation.  This only happens in the final 

steps when trying to Pinpoint the end of the segment.  This has two effects:  

(1)  It drastically reduces the number of steps required because many of 

the estimations fall short and by exaggerating the error when the segment falls short, you 

reduce the distance that Pinpoint has to travel to exceedε .  If you combine the effect of 

saving two or three steps per segment, it adds up to 100 steps if the segmentation 

produces 33 segments. 

(2)  Exaggerating the approximation error has the effect of making some 

of the segments slightly smaller than they would otherwise be if the approximation error 

were not adjusted.    However, remember that the final segment is usually truncated and 

therefore can absorb the extra space created by making the previous segments narrower.  

In a way, by decreasing the size of the each segment by a small amount, it builds in a 

little slack per segment because the approximation error is slightly smaller thanε .  The 

truncated segment is not optimized and can be increased to accommodate the small 

adjustments in all the other segments.  Only in the very high precision segmentation do 

the segments increase noticeably.  The increase is on the order of single digits when 
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considering hundreds or thousands of segments.   This compromise is acceptable because 

it dramatically reduces the number of calls to chebyRemez as shown in the last columns 

of Table 4 and Table 5.  Further, it does not increase the segments by any significant 

amount.  

This hybrid method produces by far the best solution among all the 

algorithms discussed.  Consider the function, ln( )x− , as shown in Table 4, only 98 calls 

to chebyRemez were needed to achieve segmentation, which is 0.0098% of the steps that 

brute force would take when N=1,000,000. 

 

C. MATLAB RESULTS 
MATLAB was used to segment the numeric functions into piecewise quadratic 

segments.  The uniform and non-uniform segmentation, number of segments required for 

each of the numeric functions and a comparison of the segmentation algorithms have 

been discussed in part B above. 

The coefficients that represent the piecewise quadratic approximation for the 

segments are computed and stored in a file.  These files can store the coefficients and 

segment boundaries in hexadecimal, binary or decimal form.   The NFG implemented in 

the floating point number representation, uses the coefficients saved as decimal values.  

However, when the NFG is in fixed point number system, the coefficients saved are 

hexadecimal values. 

Table 8 shows the data in the memory file for the non-uniform segmentation of 

cos( )xπ .  At the top of the memory files is a decimal number that states the number of 

segments in the memory file.  This is useful when reading the file to determine how many 

elements need to be read into the program. 
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       460 

    0.004610004610    -4.934645942292    -0.000000373180     1.000000000116 

    0.007928007928    -4.933831217369    -0.000007964422     1.000000018030 

    0.010830510831    -4.932649394425    -0.000026748228     1.000000092899 

    0.013492513493    -4.931191898804    -0.000058351444     1.000000264447 

    0.015989015989    -4.929503741104    -0.000103932118     1.000000572352  

460 

0x000000970f858467 0xfffd885d8592426b 0xfffffffffcde9a16 0x0000800000003ff4

0x00000103c8f362f9 0xfffd887837fab57d 0xffffffffbd3088d1 0x000080000026b814

0x00000162e4e8e873 0xfffd889ef1d427ca 0xffffffff1f9e9e52 0x0000800000c77ff1

0x000001ba1f681879 0xfffd88ceb4302ae2 0xfffffffe16833aaf 0x000080000237e533

0x0000020bed96624f 0xfffd8906057b39b1 0xfffffffc982779e8 0x0000800004cd1dc1
 

Table 8. Sample memory-files (Decimal and Hexadecimal).  Non-uniform segmentation 
of cos( )xπ , N=1,000,000 and 332ε −= . 

 

The first column shows the segment end points.  The next three columns are the 

coefficients of the quadratic polynomial that determines values in the segment.  The order 

is 2c , 1c  and 0c  from left to right.  Equation (0.4) shows the relationship of the 

coefficients to the polynomial. 

 2 1
2 0( )f x p c x c x c= = + +  (0.4) 

 

The hexadecimal values in Table 8 use a fixed point number system, where the 

first 17 bits are the integer including a sign bit and the last 47 bits are the fraction.  The 

number is a two’s complement number.  The number system is discussed in section III. 

 

D. SUMMARY 
MATLAB is used to segment the suite of functions in Table 1.  The segmentation 

algorithm results in the fewest segments for a given accuracy constraint.  In each segment 
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the minimax quadratic approximation is achieved by computing the coefficients using the 

Remez algorithm which performs better approximation than MATLAB’s available 

function; Polyfit  

The Remez algorithm is slow; therefore various methods were investigated to find 

an efficient algorithm to compute the segmentation of the numeric functions.  A hybrid of 

three algorithms is chosen as the best algorithm to compute fast segmentation of the suite 

of functions.  Table 4 uses only one function, but summarizes the results of the 

comparisons. 

Quadratic segmentation at high accuracy ( 332− ) results in over 96% fewer 

segments, compared to linear approximation as shown in Table 2. 

The segmentation is the first step to building the NFG.  Next the circuit has to be 

designed in hardware.  In section III, we look at the components that make up the NFG 

circuit. 
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III. NFG CIRCUIT 

A. CIRCUIT OVERVIEW 
Figure 1 is duplicated here from section I for convenience.  Figure 1 shows three 

multipliers, the segment index encoder, coefficients table and one 3-input adder.  These 

are the hardware components for the NFG. 

 

Figure 1. NFG Overview (duplicated from Section I). 
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The architecture has three 64 bit multipliers and one 3-input 64 bit adder.  The 

adder and multiplier can be implemented in two’s complement or floating point by using 

the prescribed math operators.  To generate a floating point multiplier or adder, the 

operands need to be declared as doubles or floats.  To generate a two’s complement 

multiplier or adder, each operand needs to be declared as an integer, e.g. int64_t or int.   

The segment index encoder is designed using a priority selector macro supplied 

by SRC and provided as a user callable macro.  In uniform segmentation, multiplying by 

a segment density number can obtain the desired index. 

 

1. Number System 

To determine the number system to use, we need to know the range of values the 

NFG will have to handle.  An analysis of the domain, range and coefficients provides the 

boundaries for the number system. 

Table 9 shows the analysis of the numeric functions.  The numeric functions have 

been ordered to show the most demanding to the least demanding.  At the top, ln( )x−  

requires 15 bits to accommodate any integer value the hardware may encounter, based on 

the range of values and coefficients. 

The columns, Max and Min are the maximum and minimum values among all 

coefficient values, all possible domain and range values, i.e. any number that would 

appear in the computation done by the NFG.  The column labeled log2 (abs(largest one)) 

is obtained by comparing the absolute value of Max and Min and choosing the larger.  

We then compute the logarithm base 2 of this value.  The final column shows the 

maximum number of bits required to represent the largest possible integer the NFG may 

encounter.  Note that these values have been computed for a specific domain and 

different domains may require more or less bits.  Table 2 shows the domains for each of 

the numeric functions that appear in Table 9. 

The NFG requires at least 15 bits to represent the largest integer that may be 

encountered when computing the approximation of a numeric function.  Therefore, the 

number system chosen is 16 bit integer and 16 bit fraction (i.e. 32 bit implementation).  A 



 39

64 bit implementation has 32 bit integer and 32 bit fraction.  The decimal point in the 

two’s complement number system is interpreted to be between bit 32 and bit 31 in a 64 

bit number when the LSB is 0. 

The 64 bit implementation benefits from using a 16 bit integer and 48 bit fraction, 

however the number of segments required is very large and these implementations were 

not investigated in detail.  As an example, cos( )xπ  at 492ε −=  and N=5,000,000 would 

require 19,167 segments. 

 

Function Max Min 
log2 

(abs(largest 
one)) 

Number of bits 
Required 

 24047.26212 -196.4301496 14.55358503 15 

-(x log2x + (1-x) log2(1-x)) 360.5900787 -185.0149295 8.494215892 9 
2tan ( ) 1xπ +  78.89563478 -26.88144904 6.301873574 7 

sin( )xe  94.22597144 -96.6450472 6.594623895 7 

tan( )xπ  19.70724959 -3.570442576 4.300654538 5 
ln( )x  4.934751084 -4.934751014 2.302977315 3 

sin( )xπ  1.569925541 -4.934645908 2.302946566 3 
cos( )xπ  1.569925541 -4.934645908 2.302946566 3 

1/ x  2.997676487 -2.995354324 1.583844694 2 

2log ( )x  2.882537585 -2.162615784 1.527339419 2 

2x  1.093679242 0.004061004 0.129189682 1 

 2 -0.124634328 1 1 
 2 -1.247861112 1 1 
 

1.414213562 -0.414997832 0.5 1 

 
1 -0.045379009 0 0 

Table 9. Maximum and minimum values encountered for each function in the NFG 
computation.  Last column is the number of bits required for the integer portion. 
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2. 16, 32, 64 Bit Accuracy vs. 16, 32, 64 Bit Architecture 

The accuracy and architecture can be built to match each other.  Consider a set of 

values of 16 bit accuracy.  Based on the number system, we would need 16 bits for 

integer and 16 bits for fraction (which is the accuracy).  An architecture that matches 

these needs has to have 32 bit words; the architecture would be 32 bits.  One 

implementation in the NFG was designed this way.  Another design was built with 32 bit 

accuracy (32 bits fraction and 32 bits integer) and therefore the width of the architecture 

is 64 bits. 

Another way to build the NFG is to use 64 bit architecture for all accuracies.  This 

means that all values will be represented in 64 bits.  Consider a value that is accurate to 

16 bits.  In this case, 32 bits are available to represent the fraction, but the fraction will 

only be accurate to 16 bits.  The rest of the bits are irrelevant, but the hardware operates 

on all 64 bits.  The architecture, in this case, does not match the accuracy.   

 

B. CIRCUIT COMPONENTS 

1. Segment Index Encoder 

The segment index encoder accepts input (x) values (within the domain of the 

NFG) as inputs and outputs a number used to obtain the quadratic coefficients.  The 

number is an index to the segment that x belongs.  This only applies to the non-uniform 

segmentation. 

User callable macros available in the SRC are used to implement a priority 

selector in the NFG.  The prioritized selectors work as an “if-else-if” sequence.  A wide 

number of options are available for 8, 16, 32 and 64 bit wide values.  Each of these bit 

widths options can be implemented with 4, 8, 16, 32, 64, 128 or 256 elements.  For 

example, choosing 64 bits and 256 elements, is equivalent to a priority encoder of 256 64 

bit words. 

The prioritized selector requires a Boolean condition and an assignment for a true 

condition.  In the NFG, the Boolean condition is the comparison of the segment endpoint 

to the input value (numeric function argument; x).  If x is less than the segment endpoint, 
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then x belongs to that segment and the corresponding assignment value is the index of the 

segment.  Since x lies in the chosen segment, the index of the segment is used to access 

the polynomial coefficients that approximate the numeric function in that segment.   

The types of selectors for a given segmentation are carefully chosen so as not to 

use more FPGA area than necessary.  For example, consider a numeric function that has 

been segmented into 48 segments.  The only selector that would accommodate this 

number of segments is the 64 element selector or greater.  The 64 element selector can 

handle another 16 elements.  However, since we do not need them, the whole selector 

wastes 48 elements. A better approach is to make two smaller selectors out of one 16 

element selector and one 32 element selector.  This saves FPGA area and allows us to 

build the selector we need.  An example of the described code is provided in Table 10 

 
//--Select Which Switch Statement will be executed---// 
if ( varx <= 0.333333333333333310) 

sel =  1; 
else if ( varx <= 0.500000000000000000) 

sel =  2; 
 

//---------------Switch Statement-------------------// 
switch (sel) 
{ 
   case  1:  
     select_pri_64bit_32val(  varx <= 0.010351035103510351,   0, 

                        varx <= 0.020802080208020803,   1, 
                        varx <= 0.031203120312031204,   2, 

. 

. 

. 
                        varx <= 0.322882288228822870,  30, 
                                                  31,   &indx); 

      break; 
   case  2:  

select_pri_64bit_16val(  varx <= 0.343734373437343750,  32, 
                         varx <= 0.354135413541354140,  33, 
                         varx <= 0.364586458645864590,  34, 

. 

. 

. 
                         varx <= 0.479147914791479170,  45, 
                         varx <= 0.489598959895989620,  46, 
                                                   47,   &indx); 
break; 
} 

Table 10. Code that uses two selectors to implement 48 segments. 
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To implement a larger than 256 selector, a combination of available selectors can 

be used.  In the .mc file, an if-else-if statement precedes the set of selectors and selects 

which one of the selectors will be used to encode the index.   

More detail on the various selectors available in the SRC, is provided in Appendix 

A.10 of [17]. 

 

2. Indexing in Uniform Segmentation 
In uniform segmentation, a number that is multiplied by the input value, x, is used 

to compute the appropriate segment; essentially, a segment number density.  It represents 

the number of segments per unit length.  Instead of a segment index encoder, x is 

multiplied by the segment density number and the integer result is the index that is 

applied to the coefficients’ arrays to access the coefficients for the quadratic 

approximation. 

The segment density number is obtained by dividing the entire interval by the 

number of segments and inverting the result.   

For example, consider an interval, [0, 0.5] with uniform segmentation.  If 100 

segments are realized, then the number used to multiply all inputs is
10.5 1 200

100

−−⎛ ⎞ =⎜ ⎟
⎝ ⎠

.  If 

the input is 0.3356, then the coefficients will be extracted from the OBM array using the 

index 67 ( )( )0.3356 200 67.12 67floor × = = . 

If the interval of the domain starts at a non-zero value, then the index obtained 

from the above method will be offset.  Simply subtract the offset from the index obtained 

to get the true index into the array.  This extra step increases the pipeline depth of the 

NFG.  The effect is greater in floating point implementation compared to fixed point 

implementation. 

 

 

 



 43

a. Floating Point Implementation 

The uniform segmentation of the NFG in floating point requires three 

files; main.c, <subroutine>.mc and memoryFile.  An array containing floating point 

values of the endpoints and coefficients of the uniform segmentation are passed into the 

OBM, via a DMA call.  The sample points for testing the NFG are placed in a separate 

array and passed into OBM via a second DMA call.  The memory file contains three 

numbers at the beginning of the file: 

• The number of segments (which is also the number of sets of 
coefficients in the memory file).  Stored as an int. 

• The segment density number that is used to determine the 
segment that any x input belongs to.  Stored as a double. 

• The offset value (needed for functions that have an interval 
with a non-zero begin point) 

 

b. Fixed Point Implementation 

The uniform segmentation, fixed point implementation, works similar to 

the floating point implementation.  Three files are needed; main.c, <subroutine>.mc and 

memoryFile.  The coefficients in the memory file and in the computation are two’s 

complement hexadecimal numbers, as described in the section on number systems.  The 

memory file contains three numbers at the beginning of the file: 

• The number of segments (which is also the number of sets of 
coefficients in the memory file).  Stored as an int. 

• The segment density number that is used to determine the 
segment to which any x input belongs.  Stored as an int64_t. 

• The offset value (needed for functions that have an interval 
with a non-zero begin point) 

The computation of the index, and therefore, the segment, is accomplished 

in two’s complement.  One major problem exists in this multiplication; the product is 128 

bits, but the architecture only allows 64 bits to be stored.  This means the upper 64 bits 

are truncated.  In addition, since the decimal point in the operands is 32 bits from the 

LSB, the decimal point in the product is between bit 63 and bit 64 (when LSB is 
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considered to be bit 0).  This means we lose all integer values and the entire product that 

is stored is only the fraction portion of the true 128 bit product. 

To represent the full range of numbers in the numeric functions, we need 

to retrieve some of the upper bits.  The segment density number is normally a whole 

number (without value in the fraction); occasionally the segment density number may 

have a small but negligible fraction.  We can perform a 16 bit logical shift right to the 

segment density number without a large loss.  This opens up 16 bits in the integer part of 

the product; which is really the index into the array of coefficients.  16 bits is enough to 

represent over 65,000 segments2.  The product is then shifted 48 bits to the right to give 

an index number (index numbers must be whole numbers).  This method is prone to 

rounding errors which occasionally result in the wrong index. 

Other schemes have to be implemented when both operands have a 

significant amount of data in the fraction.  The section on the two’s complement 

multiplier discusses other schemes in more detail. 

 

3. Coefficients Table 
The coefficients to the quadratic equation for each segment are stored in an array 

in the OBM banks on the MAP® board.  The segment index encoder provides an index 

into the array.  The coefficients are accessed and applied to the quadratic equation along 

with the x value that is being evaluated. 

 

4. Multiplier 
The three multipliers shown in Figure 1 are either implemented in two’s 

complement or floating point.  Floating point operations increase the pipeline depth, but 

are easier to code. 

 

 
                                                 

2  The largest number of segments is 34,483, which is the uniform segmentation of ln( )x− , 
when 332ε −= .  Table 12 shows the number of segments for various functions when using uniform 
segmentation. 
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a. Floating Point Multiplier 

The floating point multipliers implemented in the NFG are implicitly 

instantiated.  The operands are declared as doubles and when the multiplier operator in 

the .mc file was applied, the MAP® compiler builds the floating point multiplier. 

 

b. Two’s Complement Fixed Point Multiplier 
The three main categories of interest are:  

• Fixed point two’s complement multiplier  

• Floating point multiplier 

• Signed Magnitude multiplier 

The signed magnitude multiplier was not built.  The fixed point multipliers 

implemented in the NFG are either implicitly instantiated or explicitly built in HDL.  The 

two’s complement fixed point multiplier was built in Verilog, VHDL and implicitly 

instantiated by the SRC MAP® with various levels of success.   

To implicitly instantiate the two’s complement multiplier, the operands are 

declared as integer values (int64_t) and when the multiplier operator in the 

<subroutine.mc> file is applied, the MAP® compiler builds the appropriate multiplier.   

This method has two major problems; (1) The SRC 64bitx64bit multiplier 

does not result in a 128 bit product.  Instead, it results in a 64 bit product that is 

composed of only the lower 64 bits.  (2) If the MSB at the cutoff is a binary 1, the 

number appears as a negative number, even though it is really a positive number. 

Because of the number system chosen, i.e. 32 bits of integer and 32 bits of 

fraction, multiplication results in a product that represents only the fraction portion of the 

multiply; the integer portion, bits 65 through 128, are truncated.  

One way to overcome this limitation is to choose a different number 

system that has fewer bits to represent the fraction, but this reduces the accuracy of the 

NFG and it still limits the size of the integer.  The integer must be at least 16 bits to 

provide full coverage of the values encountered in the suite of functions in Table 1.  One 
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implementation of the NFG was built by shifting the operands right 8 bits, before the 

multiply.  This allowed for 16 bits to be represented in the integer portion of the product.  

In this case, the best accuracy that one would expect to attain is 24 bits, i.e. 242− .  Due to 

truncating the operands, error is propagated to the output and the accuracy is not reliable.  

Shifting values presents another problem, because, if the MSB is a binary 1, then the right 

shift operation will sign extends the number.  This has unwanted effects.  A product may 

be positive, but if the bit right before the cutoff point is a binary 1, the shifted values will 

be sign extended and we have to zero out the leading bits.  More detail on the results of 

this method can be found in section V where the implementation results are covered. 

The best solution is to build an HDL multiplier that can compute the result 

in the number system chosen and therefore keep the desired accuracy and the best range 

for the integer without any sacrifices to accuracy.  The problem with this method is that is 

requires a long carry chain. 

Verilog or VHDL can be used to explicitly build the multipliers.  Several 

multipliers were built in VHDL and Verilog.  The HDL files do not meet the timing 

requirements while running the NFG, although the program compiles without any errors.  

Simulation using Modelsim and Xilinx ISE showed that the design for the multipliers 

was correct.  The problem appears to be the carry chain that is required to add all the 

partial products. 

Further investigation is needed to determine if indeed the problem is in the 

carry chain and if a carry save adder (CSA) followed by a carry lookahead adder (CLAH) 

are required.  (Which were not built) 

 

5. Adder 
The NFG required a 3-input adder.  As in the case with the multipliers, floating 

point and fixed point adders are instantiated by the MAP® compiler.  
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C. SUMMARY 

The NFG circuit requires three multipliers and one 3-input adder.  Floating point 

implementation is easier than the fixed point implementation, but requires more 

hardware.  The multipliers can be instantiated implicitly or in the case of fixed point, the 

user has the option to explicitly build the multiplier in HDL.   

Fixed point arithmetic presents some challenges with rounding and truncating of 

the operands and results. 

The circuit design was built on the SRC-6E reconfigurable hardware.  Section IV 

provides a background on the SRC-6E system to give a better understanding of the 

hardware and software system. 
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IV. SRC BACKGROUND 

A. INTRODUCTION 
The late Seymour Cray established SRC Computers Incorporated in Colorado 

Springs, Colorado in 1996.  SRC developed the IMPLICIT+EXPLICIT™ architecture 

that is designed to provide increased performance over conventional processors [16]. 

 

1. IMPLICIT+EXPLICITTM Architecture 
The IMPLICIT+EXPLICIT™ architecture allows the full integration of Dense 

Logic Device (DLD) technology such as ASIC devices or microprocessors with 

reconfigurable Direct Execution Logic (DEL).  SRC’s Carte™ Programming 

Environment lets the programmer choose that part of code that executes in the fixed logic 

(i.e. microprocessor - implicit) and that part that executes in the reconfigurable hardware 

(explicit) [16].  Figure 13 is an overview of the SRC IMPLICIT+EXPLICIT™ 

architecture.   

 

 

Figure 13. IMPLICIT+EXPLICIT™ architecture [16]. 
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The user can program in the Carte™ Programming Environment in C or 

FORTRAN instead of designing logic.  A single executable is generated that specifies 

which operations execute on which parts of the system.  If the programmer desires to 

design the logic, he/she can design in a schematic capture program and generate VHDL 

or Verilog files that are used as macros.  The user can also code the Verilog and VHDL 

files and use them as macros.  More information on what is needed to implement macros 

is provided in the section on software code [16]. 

 

B. HARDWARE 
Figure 14 shows 3 Xilinx XC2V6000 FPGAs on the MAP®, 2 sets of memory and 

some ROM.   

 

Figure 14. MAP® Hardware overview diagram [18]. 
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There are three FPGAs.  The user can program two of the FPGAs, while the third 

is used as a controller.  The FPGAs are Xilinx Virtex II’s, XC2v6000 with a -4 speed 

grade.  There are 6 banks of dual ported On-board Memory (OBM) with a total of 24 MB 

(high-speed local memory).  The OBM RAM is connected to the two user logic FPGAs 

via a 4800 MB/s (OBM RAMs is also connected to third FPGA via another 4800 MB/s 

bus). 

The two FPGAs are connected directly to each other with access to a 4 MB dual 

ported memory bank for inter-chip data exchange on a 4800 MB/s bus.  The two FPGAs 

have two General purpose I/O (GPIO) ports for direct data off the MAP® that is 

connected via a 2400 MB/s bus.  

Internal to each user FPGA is an additional 144 BRAM 18KB blocks [19] for a 

total of 2,592 KBs of BRAM.  BRAM is fast since it is on the FPGA chip. 

 

C. SOFTWARE CODE 
A user program consists of two C programs, main.c and <subroutine>.mc as well 

as “helper” files.  

 

1. main.c 
The main routine is a C program that runs on the SRC’s Intel processor.  The 

main routine contains the declarations for the subroutine functions and makes the 

subroutine functions visible to the Intel processor.  

To effectively use the MAP® hardware, we need to partition the code and select 

the portions that will provide improved overall performance when executed on the MAP® 

processor.  These include loops that can be pipelined, or manipulation of bits that are in a 

long bit stream of data [20].  They are placed in a C program described in the next 

section.  
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2. <subroutine>.mc 

These are the files that contain the function subroutine that is called from the main 

routine to execute on the MAP® boards.  The code in the .mc files should not contain any 

external calls outside the MAP® with the exception of SRC-defined or user-defined 

macros.    

The .mc file does not allow any system calls or runtime functions that require 

intervention from the operating system.  The only exception is the printf statement which 

is ignored during compile time except in debug mode; the printf statement is very handy 

in the debug mode.  This means that .mc cannot contain any additional system header 

files besides the libmap.h header file, which is the only runtime library allowed in the 

MAP® [16]. 

 

3. Makefile 
Many files are used during compilation.  The Makefile identifies the files and 

commands that are used by the compiler.  The Makefile allows the programmer to set the 

source code preprocessing environment variables, C compiler flags, MAP® compiler 

flags and simulation compiler flags [16].   SRC provides a template that can be tailored 

for the specific needs of the program. 

 

4. Macros 
Macros allow the programmer to design in HDL.  It is more flexible than just the 

<subroutine>.mc file alone.  Macros allow the programmer the flexibility of creating 

specific and unique hardware that can manipulate wide bit values and all the way down to 

single bits. 

To implement a macro, the Makefile needs to know where to find the HDL files 

and the macro support files.  The following are required for macros: 
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a. info 

The info file provides the MAP® compiler with the name of the macro and 

the relationship between the call and the macro instantiation.  The info file defines the 

name, characteristics (such as whether the macro is pipelined), whether it interacts with 

external systems (outside the code block), the latency of the circuit specified by the 

macro, the number of inputs and outputs.  The signal names and macros in the Verilog 

code that is generated by the MAP®  compiler requires the info file in order to correctly 

map the operators and calls in the source program [16]. 

The info file can also be used to define the behavior, in C, that the 

hardware is expected to perform.  This feature is available for the debug mode and uses 

the Intel processor to emulate the hardware that the programmer intends to design on the 

MAP®.   

If multiple macros are used, the user only needs one info file.  The 

information associated with the different macros must be put into the one info file.  

 

b. blk.v 
The black box file, blk.v, describes the macros interface.  It is a simple file 

that tells the number of bits for each input and output and is described in a Verilog-style. 

If multiple macros are used, the user must add the interface information 

into a single blk.v file.  

 

c. HDL Files 
The HDL files can be written in VHDL or Verilog.  They are specified in 

the Makefile. 

 

d. Location for NGO Directory 

This location must be specified in the Makefile to identify the directory 

that will contain all the NGO files.  The recommended practice is to put the NGO 
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directory in the same directory with all the macro information, and include the info, blk.v 

and HDL files. 

The macros describe the logical design at a high level.  The NGO files are 

used by NGDbuild to create an NGD file.  The NGD file describes the logical design in 

terms of Xilinx primitives (basic elements in the FPGA). 

 

D. SUMMARY 

The SRC system provides flexibility, and a user-friendly interface for designing 

specialized hardware.  

Various implementations of the NFG were built on the SRC system.  The results 

are documented in section V. 

 



 55

V. IMPLEMENTATION RESULTS 

A. UNIFORM SEGMENTATION 
Uniform segmentation is easier to implement in terms of programming the 

<subroutine>.mc file.  Appendix C shows the code main.c and subr.mc for uniform and 

non-uniform segmentation. 

 

1. Floating Point Implementation 
Two major advantages of the uniform segmentation floating point implementation 

are (1) the multiplier does all the work of moving the decimal point and (2) once the file 

is compiled, any function can be computed without having to recompile.  The only 

requirement is to change the memory file. 

The disadvantage is that floating point operations require much hardware.  The 

complexity of using floating point is hidden from the user, but is evident in the amount of 

multipliers consumed and the pipeline depth required.  Figure 15 shows the summary 

report after the compile process is completed; (i.e. after the user types make hw ). 

 
###################################################################### 
##################        INNER LOOP SUMMARY      #################### 
loop on line 55: 
    clocks per iteration:    1 
    pipeline depth:         84 
###################################################################### 
###############        PLACE AND ROUTE SUMMARY    #################### 
  Number of Slice Flip Flops:      17,647 out of  67,584   26% 
  Number of 4 input LUTs:           9,299 out of  67,584   13% 
  Number of occupied Slices:       11,390 out of  33,792   33% 
  Number of MULT18X18s:                64 out of     144   44% 
  freq = 100.2 MHz 
###################################################################### 

Figure 15. NFG Pipeline depth and place and route summary. 
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The SRC has user callable macros that are summarized in Appendix A of [20].  

Figure 16 shows the difference between the pipeline depth of the NFG and the SRC user 

callable macro.  The pipeline depth for the NFG is a 20% less than that of the user 

callable macro. 

Figure 16 also shows the place and route information associated with mapping 

both the NFG and SRC’s user callable cosine macro.  Comparing Figure 15 with Figure 

16, one can see the hardware requirements have increased due to adding SRC’s user 

callable macro. 

 
###################################################################### 
##################        INNER LOOP SUMMARY      #################### 
loop on line 55: 
    clocks per iteration:    1 
    pipeline depth:         84 
 
loop on line 72: 
    clocks per iteration:    1 
    pipeline depth:        105 
###################################################################### 
###############        PLACE AND ROUTE SUMMARY    #################### 
  Number of Slice Flip Flops:      27,557 out of  67,584   40% 
  Number of 4 input LUTs:          17,318 out of  67,584   25% 
  Number of occupied Slices:       17,862 out of  33,792   52% 
  Number of Block RAMs:                 1 out of     144    1% 
  Number of MULT18X18s:                92 out of     144   63% 
  freq = 100.0 MHz 
###################################################################### 

Figure 16. Pipeline depth (NFG and SRC Cosine Macro).  Place and route summary. 

 

Table 11 shows a comparison of the hardware used to build the NFG, the macro 

and both on the same FPGA.  The comparison shows that the NFG approximation is 

close to the macro in terms of hardware needed; with the exception of the multiplier.  The 

NFG requires a slightly more than double the multipliers that the macro requires.  
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 NFG Alone Macro Alone NFG & Macro 
 

# of Slice Flip Flops 26% 21% 40% 
# of 4 input LUTs 13% 14% 25% 
# of occupied Slices 33% 27% 52% 
# of Block RAMs 0% 1% 1% 
# of MULT18X18s 44% 19% 63% 
Freq 100.2 MHz 100.1 MHz 100.0 MHz 

Table 11. Comparison of NFG uniform segmentation and macros: NFG alone, Macro alone 
and both (function is cos( )xπ .  Implementations without offset. 

 

The implementation described above applies to functions that have a domain 

interval that starts at zero.  If the interval starts at a non-zero value, then the index 

computed needs to be adjusted by an offset value.  Figure 17 shows the hardware 

requirements when the offset is applied. 

 
###################################################################### 
##################        INNER LOOP SUMMARY      #################### 
loop on line 56: 
    clocks per iteration:    1 
    pipeline depth:         98 
 
loop on line 74: 
    clocks per iteration:    1 
    pipeline depth:        127 
###################################################################### 
###############        PLACE AND ROUTE SUMMARY    #################### 
  Number of Slice Flip Flops:      29,306 out of  67,584   43% 
  Number of 4 input LUTs:          20,678 out of  67,584   30% 
  Number of occupied Slices:       20,125 out of  33,792   59% 
  Number of Block RAMs:                 1 out of     144    1% 
  Number of MULT18X18s:                72 out of     144   50% 
  freq = 100.0 MHz 
###################################################################### 

Figure 17. Pipeline depth (NFG and SRC ln( )x−  implemented in macros).  Place and 
route summary with subtraction hardware included for computing offset (when 

finding the index. of coefficients). 

 

The adjustment is a subtraction operation.  In the floating point number system, 

the hardware required to perform arithmetic computations is large and by adding a 
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subtraction computation, the NFG pipeline depth increases from 84, as shown in Figure 

15 and Figure 16, to 98 as shown in Figure 17. 

Figure 18 shows the comparison between the output of the macro and the NFG.  

The macro computes using float values, while the NFG can compute higher precision 

values.  Therefore, a user can achieve a shorter pipeline depth and higher accuracy by 

using the NFG.  The cost of using the NFG is that the user must have a memory file to 

load the coefficients of the quadratic approximation into OBM.   

Figure 18 shows the comparison of the results from the NFG that uses a memory 

file with the coefficients computed with an accuracy of 332ε −= .  This implementation has 

459 segments and an accuracy of 32 bits. 

The first labeled column in Figure 18 is, x values, which shows the values of x, 

which in this case are the endpoints.  Based on the Remez algorithm, the end points, 

begin points and two other points in the middle of each segment have the worst case 

approximation error.  Therefore, we expect to see the error of these points to be very 

close to the maximum error allowed for the segmentation 

i.e. 33 -102 1.1641532... 10ε −= = ×  (essentially at the 10th decimal place). 

Excel and MATLAB are used to compute cos( )xπ .  The results for Excel and 

MATLAB are exactly the same as shown in Figure 18, in the column labeled Excel-

MATLAB (difference of the results is zero).  The NFG output and the SRC cosine macro 

are compared to Excel and the results are shown in the last two columns.  Figure 18 

shows that SRC’s macro is accurate to 232ε −= , which is the correct accuracy for floating 

point values.  The NFG is accurate to within 332− .  This accuracy can be increased without 

an increase in FPGA hardware, if desired.  The cost is OBM memory to store a larger 

coefficients table. 

 



 59

59
 

 
x Values NFG OUTPUT SRC MACRO Excel Cosine MATLAB Excel-MATLAB ySRCMacro - Excel NFG-Excel

x: 0.00089400089400090 ysubr: 0.999996055923 ySRCMacro: 0.999996066093 0.999996055923 0.999996055923 0.000000000000000000 0.00000001017031 -0.00000000000016
x: 0.00178850178850180 ysubr: 0.999984214899 ySRCMacro: 0.999984204769 0.999984214899 0.999984214899 0.000000000000000000 -0.00000001012988 -0.00000000000049
x: 0.00268300268300270 ysubr: 0.999964477019 ySRCMacro: 0.999964475632 0.999964477020 0.999964477020 0.000000000000000000 -0.00000000138820 -0.00000000000081
x: 0.00357750357750360 ysubr: 0.999936842441 ySRCMacro: 0.999936819077 0.999936842442 0.999936842442 0.000000000000000000 -0.00000002336516 -0.00000000000114
x: 0.00447200447200450 ysubr: 0.999901311383 ySRCMacro: 0.999901294708 0.999901311383 0.999901311383 0.000000000000000000 -0.00000001667436 -0.00000000000001
x: 0.00536600536600540 ysubr: 0.999857910602 ySRCMacro: 0.999857902527 0.999857910603 0.999857910603 0.000000000000000000 -0.00000000807656 -0.00000000000178
x: 0.00626050626050630 ysubr: 0.999806591898 ySRCMacro: 0.999806582928 0.999806591900 0.999806591900 0.000000000000000000 -0.00000000897243 -0.00000000000211
x: 0.00715500715500720 ysubr: 0.999747377743 ySRCMacro: 0.999747395515 0.999747377745 0.999747377745 0.000000000000000000 0.00000001777088 -0.00000000000195
x: 0.00804950804950800 ysubr: 0.999680268602 ySRCMacro: 0.999680280685 0.999680268604 0.999680268604 0.000000000000000000 0.00000001208112 -0.00000000000276
x: 0.00894400894400890 ysubr: 0.999605265006 ySRCMacro: 0.999605238438 0.999605265009 0.999605265009 0.000000000000000000 -0.00000002657168 -0.00000000000307
x: 0.00983850983850980 ysubr: 0.999522367549 ySRCMacro: 0.999522387981 0.999522367552 0.999522367552 0.000000000000000000 0.00000002042948 -0.00000000000339
x: 0.01073301073301070 ysubr: 0.999431576883 ySRCMacro: 0.999431550503 0.999431576887 0.999431576887 0.000000000000000000 -0.00000002638399 -0.00000000000372
x: 0.01162751162751160 ysubr: 0.999332893727 ySRCMacro: 0.999332904816 0.999332893731 0.999332893731 0.000000000000000000 0.00000001108489 -0.00000000000406
x: 0.01252201252201250 ysubr: 0.999226318859 ySRCMacro: 0.999226331711 0.999226318863 0.999226318863 0.000000000000000000 0.00000001284753 -0.00000000000436
x: 0.01341651341651340 ysubr: 0.999111853121 ySRCMacro: 0.999111831188 0.999111853126 0.999111853126 0.000000000000000000 -0.00000002193770 -0.00000000000469
x: 0.01431101431101430 ysubr: 0.998989497418 ySRCMacro: 0.998989522457 0.998989497423 0.998989497423 0.000000000000000000 0.00000002503456 -0.00000000000501
x: 0.01520501520501520 ysubr: 0.998859327721 ySRCMacro: 0.998859345913 0.998859327726 0.998859327726 0.000000000000000000 0.00000001818690 -0.00000000000535
x: 0.01609951609951610 ysubr: 0.998721199455 ySRCMacro: 0.998721182346 0.998721199461 0.998721199461 0.000000000000000000 -0.00000001711431 -0.00000000000568
x: 0.01699401699401700 ysubr: 0.998575184308 ySRCMacro: 0.998575210571 0.998575184314 0.998575184314 0.000000000000000000 0.00000002625699 -0.00000000000601
x: 0.01788851788851790 ysubr: 0.998421283434 ySRCMacro: 0.998421311378 0.998421283440 0.998421283440 0.000000000000000000 0.00000002793842 -0.00000000000633
x: 0.01878301878301880 ysubr: 0.998259498047 ySRCMacro: 0.998259484768 0.998259498053 0.998259498053 0.000000000000000000 -0.00000001328536 -0.00000000000665
x: 0.01967751967751970 ysubr: 0.998089829425 ySRCMacro: 0.998089849949 0.998089829432 0.998089829432 0.000000000000000000 0.00000002051732 -0.00000000000698
x: 0.02057202057202060 ysubr: 0.997912278907 ySRCMacro: 0.997912287712 0.997912278915 0.997912278915 0.000000000000000000 0.00000000879730 -0.00000000000730
x: 0.02146652146652150 ysubr: 0.997726847897 ySRCMacro: 0.997726857662 0.997726847905 0.997726847905 0.000000000000000000 0.00000000975711 -0.00000000000763
x: 0.02236102236102240 ysubr: 0.997533537859 ySRCMacro: 0.997533559799 0.997533537867 0.997533537867 0.000000000000000000 0.00000002193241 -0.00000000000795
x: 0.02325552325552330 ysubr: 0.997332350318 ySRCMacro: 0.997332334518 0.997332350326 0.997332350326 0.000000000000000000 -0.00000001580801 -0.00000000000828
x: 0.02415002415002410 ysubr: 0.997123286864 ySRCMacro: 0.997123301029 0.997123286873 0.997123286873 0.000000000000000000 0.00000001415636 -0.00000000000860
x: 0.02504402504402500 ysubr: 0.996906472609 ySRCMacro: 0.996906459332 0.996906472618 0.996906472618 0.000000000000000000 -0.00000001328664 -0.00000000000891
x: 0.02593852593852590 ysubr: 0.996681666744 ySRCMacro: 0.996681690216 0.996681666753 0.996681666753 0.000000000000000000 0.00000002346290 -0.00000000000925
x: 0.02683302683302680 ysubr: 0.996448990104 ySRCMacro: 0.996448993683 0.996448990113 0.996448990113 0.000000000000000000 0.00000000356950 -0.00000000000957

Float Accuracy 0.00000011920929
32 Bit Accuracy 0.00000000011642  

Figure 18. Results from Uniform Segmentation NFG compared with SRC Cosine Macro, MATLAB and Excel. 
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The results in Figure 18 show that the accuracy in the NFG can be increased to 33 

bits.  To take advantage of the uniform segmentation, we need to know the number of 

segments required in uniform segmentation.  The quadratic coefficients for the numeric 

functions are stored in OBM memory.  Table 12 shows the number of segments required 

for each of the accuracies.  All the segments shown can be implemented in the NFG, even 

when the number of segments is as large as 34483; as in the numeric function: ln( )x−  

 

Number of Segments Numeric Function 
172ε −=  242ε −=  332ε −=  

2x  8 39 311 
1/ x  17 81 646 

x  7 33 257 

1/ x  11 55 439 

2log ( )x  13 64 506 
ln(x)  12 56 448 

sin( )xπ  14 70 559 
cos( )xπ  14 70 559 
tan( )xπ  18 88 704 

ln( )x−  794 4017 34483 

2tan ( ) 1xπ +  30 151 1204 

( )2 2log (1 ) log (1 )x x x x− + − −  399 2013 16667 

1
1 xe−+

 
5 23 178 

2

21
2

x

e
π

−
 

11 52 412 

sin( )xe  125 627 5103 

Table 12. Number of segments required for Uniform Segmentation computed with 
N=1,000,000 for various values ofε . 

 

2. Fixed Point Implementation 
The fixed point implementation has a shorter pipeline depth.  Numeric function 

2x  has a pipeline depth of 31 in fixed point and 84 in floating point uniform 
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segmentation.  The multiplier inferred by the SRC accepts 64 bit operands and outputs a 

64 bit product that contains only the lower 64 bits of the computed 128 bit product.  This 

present a challenge when computing in fixed point number system as discussed in section 

III.B.4.a. 

Table 13 shows the fixed point implementation without any special adjustments to 

the bits.  The function is 2x .  The green portion of the table did not require any 

adjustment.  In the yellow section, adjustments are required to eliminate the unintended 

sign extension of shifted values.  The last two columns show the accuracy of the NFG.  

The very last column shows the accuracy when rounding is performed (rounding 

performed only in the final result, not at any intermediate points). 

 

Index x Values Excel 2^x NFG Approx
Accurate    
to x Bits

If rounding  
were 

performed
0 6905840 104972342 1049722c3 23 bits 24 bits
1 d20c146 1094364e6 109436464 24 bits 24 bits
2 13b12a4d 10e051a07 10e051983 22 bits 24 bits
3 1a419353 112dca51f 112dca498 23 bits 24 bits
4 20d1fc5a 117ca6a6a 117ca69e0 22 bits 24 bits
5 27626560 11ccecff2 11ccecf66 24 bits 24 bits
6 2df2ce67 121ea3d94 121ea3d06 24 bits 24 bits
7 3483376e 1271d1d0a 1271d1c7b 23 bits 23 bits
8 3b13a074 12c67d9f5 12c67d962 24 bits
. . . . .
. . . . .
. . . . .
24 a41a41a4 18f374a1d 18f374959 22 bits 23 bits
25 aaaaaaab 1965fea54 1965feb1d 23 bits 23 bits
26 b13b13b1 19da96753 19da96689 22 bits 24 bits
27 b7cb7cb8 1a51457f7 1a51458c6 20 bits 21 bits
28 be5be5be 1aca155ce 1aca154fc 23 bits 24 bits
. . . . .
. . . . .
. . . . .
36 f2df2df3 1ee1ebf39 1ee1ec02c 21 bits 21 bits
37 f96f96f9 1f6fb0940 1f6fb084a 23 bits 23 bits
38 100000000 200000000 0 N/A N/A  

Table 13. Fixed point implementation of 2x , no bit shifts, N=1,000,000 and 242ε −= . 
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Table 13 shows that the accuracy3 degrades in segments of higher index.  This is 

expected because uniform segmentation results in segments that have varied accuracy.  

Figure 19 shows the error expected for uniform segmentation of 2x , which is consistent 

with the results in Table 13.  When implemented in hardware, this design does not meet 

the accuracy because the values are truncated at various intermediate points in the 

computation.  The error propagates and magnifies the error in the result. 

A bigger problem exists in indexing.  In Table 13, the coefficients used to 

compute the NFG output for index 24, were actually coefficients intended for segment 

25.  The segment indexing failed to give the correct index.  These problems contributed 

to the lower output accuracy as is seen in the second from last column in Table 13. 

The advantage of using 2x  is that all values are less than 1.0 except for the last 

value; x is 1.0.  No integers to deal with in this example. 
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Figure 19. Uniform Segmentation of 2x , N=1,000,000 and 242ε −= . 

                                                 
3  The endpoints of the segments are used as the x input values to test the numeric factions.  The 

endpoints have the worst case approximation error.  Table 13 shows the worst case scenario. 



 63

This implementation works for only a few functions.  To make it work for the rest 

of the functions, a better method is required to handle integers and rounding.  

Table 14 shows the implementation adjusted to accommodate the integers.  As 

described in III.B.4.b, an arithmetic shift right (8 bits) is performed on the multiplication 

operands before multiplication.  The product now has 16 bits to represent integer portion 

of the product.  This is enough for all the values that will be encountered in the suite of 

functions investigated. 

The worst case function is ln( )x− of large coefficients.  Whenever the 

coefficients are very large, the impact of small numbers is larger and therefore a greater 

room for errors exists.  When the operands are shifted, the values are truncated which 

causes propagation of error to the product.  Last column shows the accuracy. 

 

INDEX x x^2 a ax^2 b bx c fx Accuracy
1959 1f7bb7 3df32 8b2b821 21ad89af fffffffffb0d5a05 ffffffff6439c766 1ecb291c2 17299e2d7 25 bits
1959 1f7bb77c 3df323a 8b2b82181 21ad8ba8 fffffffb0d5a05a1 ffffffff6439c516 1ecb291c2 17299e284
1960 1f7fc3 3e030 8b09553 21ade3bd fffffffffb0de083 ffffffff64364dd0 1ecaa4c9b 1728e7e28 16 bits
1960 1f7fc3b5 3e0312a 8b09553aa 21adedda fffffffb0de083fd ffffffff64364a70 1ecaa4c9b 1728e84e6
1961 1f83cf 3e12f 8ae7350 21ae4550 fffffffffb0e66e1 ffffffff6432d489 1eca20868 172832241 20 bits
1961 1f83cfee 3e1303a 8ae7350d8 21ae4ffb fffffffb0e66e1ad ffffffff6432d005 1eca20868 172832868
1962 1f87dc 3e22f 8ac5215 21aeae58 fffffffffb0eed1f ffffffff642f56a0 1ec99c51b 17277ca13 21 bits
1962 1f87dc27 3e22f6b 8ac5215bd 21aeb200 fffffffb0eed1f75 ffffffff642f55ec 1ec99c51b 17277cd06
1963 1f8be8 3e32e 8aa31a7 21af0d91 fffffffffb0f733c ffffffff642bddd6 1ec9182c8 1726c6e2f 19 bits
1963 1f8be861 3e32ebe 8aa31a702 21af13fc fffffffb0f733c23 ffffffff642bdbfd 1ec9182c8 1726c72c1
1964 1f8ff4 3e42e 8a811fc 21af742b fffffffffb0ff939 ffffffff64286557 1ec894153 172611ad5 22 bits
1964 1f8ff49a 3e42e30 8a811fcf0 21af75d3 fffffffb0ff93990 ffffffff64286272 1ec894153 172611997
1965 1f9400 3e52d 8a5f31f 21afd103 fffffffffb107f15 ffffffff6424ed03 1ec8100da 17255bee0 17 bits
1965 1f9400d3 3e52dc4 8a5f31f3f 21afd7a4 fffffffb107f15ca ffffffff6424e90a 1ec8100da 17255c189
1966 1f980d 3e62d 8a3d508 21b03549 fffffffffb1104d2 ffffffff64217027 1ec78c14c 1724a66bc 23 bits
1966 1f980d0c 3e62d78 8a3d508d1 21b0395e fffffffb1104d205 ffffffff64216fec 1ec78c14c 1724a6a96
1967 1f9c19 3e72d 8a1b7b9 21b09860 fffffffffb118a6e ffffffff641df863 1ec7082a9 1723f136c 21 bits
1967 1f9c1945 3e72d4e 8a1b7b98d 21b09b00 fffffffb118a6e3d ffffffff641df714 1ec7082a9 1723f14be
1968 1fa025 3e82d 89f9b37 21b0fa5d fffffffffb120fe8 ffffffff641a80a5 1ec684509 17233c00b 28 bits
1968 1fa0257f 3e82d44 89f9b3736 21b0fca5 fffffffb120fe8f7 ffffffff641a7e53 1ec684509 17233c001
1969 1fa431 3e92d 89d7f75 21b15b0f fffffffffb129545 ffffffff64170989 1ec60083c 172286cd4 24 bits
1969 1fa431b8 3e92d5a 89d7f754d 21b15e1b fffffffb1295453d ffffffff64170607 1ec60083c 172286c5e
1970 1fa83d 3ea2d 89b647f 21b1baa9 fffffffffb131a80 ffffffff64139271 1ec57cc71 1721d198b 25 bits
1970 1fa83df1 3ea2d92 89b647f6b 21b1bf92 fffffffb131a8026 ffffffff64138dd2 1ec57cc71 1721d19d6  

Table 14. Fixed point, uniform segmentation of ln( )x− , multiplier operands shifted by 8 
bits, N=1,000,000 and 242ε −= . 
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In Table 14, the first column is the index into the array.  The rows show two 

computations; the NFG is in the colored row and the row below shows the correct values 

which have been computed in MATLAB and converted to the number representation.  

Coefficients a, b the input x and x^2 are shifted 8 bits in the NFG (colored rows).  The 

intermediate products show the error in the intermediate steps.  The two products; ax^2 

and bx have been realigned before the final addition step.  Table 14 shows the effect of 

the error as it propagates from the intermediate steps to the final answer.  The last column 

shows the number of bits that match between the NFG output (in the colored row) and the 

desired output.  This is basically telling how accurate the NFG has performed.  As can be 

seen, there are instances where the error is large. 

Table 15 shows the pipeline depth is 32.  It also shows the summary of place and 

route and hardware resource requirements to implement uniform segmentation using 

fixed point numbers.  This data is the same for all the numeric functions.  The memory 

file determines which numeric function will be implemented. 

 
###################################################################### 
##################        INNER LOOP SUMMARY      #################### 
loop on line 54: 
    clocks per iteration:    1 
    pipeline depth:         32 
###################################################################### 
###############        PLACE AND ROUTE SUMMARY    #################### 
  Number of Slice Flip Flops:       8,751 out of  67,584   12% 
  Number of 4 input LUTs:           3,282 out of  67,584    4% 
  Number of occupied Slices:        5,226 out of  33,792   15% 
  Number of MULT18X18s:                40 out of     144   27% 
  freq = 100.0 MHz 
###################################################################### 

Table 15. Pipeline depth and hardware resources for uniform implementation with no 
adjustments. 

 

Table 16 is a comparison of uniform segmentation between the floating point and 

fixed point NFG implementations.  They both require the same size memory files, but the 

floating point hardware can handle a larger range of values than the fixed point 

implementation.   
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 Floating Point Fixed Point Fixed Point / 
Floating Point 

Pipeline Depth 84 32 38 % 
# of Slice Flip Flops 26% 12% 46 % 
# of 4 input LUTs 13% 4% 31 % 
# of occupied Slices 33% 15% 45 % 
# of Block RAMs 0% 0% 0 % 
# of MULT18X18s 44% 27% 61 % 
Freq 100.2 MHz 100.1 MHz 0 % 

Table 16. Comparison of uniform segmentation NFG between fixed point and floating 
point. 

 

B. NON-UNIFORM SEGMENTATION 

Non-uniform segmentation requires a segment index encoder.  The SRC 

programming environment has a priority selector macro that is used as the segment index 

encoder for the NFG. 

 

1. Floating Point Implementation 
The priority selector macro in the SRC, is used as the segment index encoder.  

The priority selector has a limit (approximately 150 elements) when used in the NFG 

with three 64 bit multipliers.  The non-uniform segmentation NFG, in floating point, has 

a pipeline depth of 74. 

The math macros available in the SRC have pipeline depths that vary.  For 

example,
2

21
2

x

e
π

−
 implemented using the math macros has a pipeline depth of 274 as 

shown in Table 17.  Table 17 summarizes the hardware pipeline depth for the suite of 

numeric functions.  The table shows side by side comparisons of the pipeline depth for 

the NFG and the SRC math macros.  In 10 of the 15 functions, the pipeline depth is 

smaller.  For one function the pipeline depths are the same and for 4 of the functions the 

NFG pipeline depth is larger.  Regardless of the size of the function, the NFG has the 

same pipeline depth; the only exception is sin( )xe .  It is only one clock longer.  
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Three functions in Table 17 are limited by the number of segments required.  In 

the floating point implementation with 3 multipliers and the other hardware requirements, 

the FPGA runs out of resources to build large priority selectors.  The priority selectors 

were limited to approximately 150 segments.  Implementations requiring larger selectors 

did not compile on the MAP.  The data was obtained by compiling in debug mode.  Some 

of the implementations were built in hardware, for example: 
2

21
2

x

e
π

−
. 

 

Numeric Function Macro  
Pipeline Depth 

NFG 
Pipeline Depth 

Number of 
Segments 

242ε −=  
2x  132 74 35 

1/ x  70 74 50 
x  43 74 24 

1/ x  74 74 36 

2log ( )x  73 74 44 
ln(x)  61 74 39 

sin( )xπ  105 74 58 
cos( )xπ  105 74 58 
tan( )xπ  135 74 58 

ln( )x−  127  74 1634 
2tan ( ) 1xπ +  254 74 79 

( )2 2log (1 ) log (1 )x x x x− + − −  114 74 1834 

1
1 xe−+

 
185 74 20 

2

21
2

x

e
π

−
 

274 74 45 

sin( )xe  212 75 2654 

Table 17. Pipeline depth for various implementations of using the available macros or the 
NFG in floating point number system. 

 

                                                 
4 Note that these numbers (number of segments) are larger than 150, and cannot be realized in priority 

selector in the floating point implementation.  
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When both the NFG and the macro are built on the FPGA, a large amount of 

resources are consumed and the frequency may be affected due to place and route 

difficulties and increased delay in the wiring.  Figure 20 shows the summary of the place 

and route when numeric function
2

21
2

x

e
π

−
is implemented with the macros and the NFG 

both on the same FPGA.  The frequency is 77.2MHz. 

 
###################################################################### 
##################        INNER LOOP SUMMARY      #################### 
loop on line 53: 
    clocks per iteration:    1 
    pipeline depth:         74 
 
loop on line 139: 
    clocks per iteration:    1 
    pipeline depth:        274 
###################################################################### 
###############        PLACE AND ROUTE SUMMARY    #################### 
  Number of Slice Flip Flops:      51,967 out of  67,584   76% 
  Number of 4 input LUTs:          39,520 out of  67,584   58% 
  Number of occupied Slices:       33,790 out of  33,792   99% 
  Number of Block RAMs:                 3 out of     144    2% 
  Number of MULT18X18s:                90 out of     144   62% 
  freq = 77.2 MHz 
###################################################################### 

Figure 20. NFG and macro both built on the FPGA for numeric function;
2

21
2

x

e
π

−
. 
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The performance improves if only one is built at a time.  Figure 21 shows the 

same function built on the FPGA using the NFG only.  The frequency is 100.0MHz. 

 
###################################################################### 
##################        INNER LOOP SUMMARY      #################### 
loop on line 53: 
    clocks per iteration:    1 
    pipeline depth:         74 
###################################################################### 
###############        PLACE AND ROUTE SUMMARY    #################### 
  Number of Slice Flip Flops:      26,377 out of  67,584   39% 
  Number of 4 input LUTs:          16,386 out of  67,584   24% 
  Number of occupied Slices:       17,473 out of  33,792   51% 
  Number of MULT18X18s:                48 out of     144   33% 
  freq = 100.0 MHz 
###################################################################### 

Figure 21. NFG built on the FPGA for numeric function;
2

21
2

x

e
π

−
. 

Table 18 shows the results from computing
2

21
2

x

e
π

−
, with N=1,000,000 

and 242ε −= .  The values are displayed to twelve decimal places.  This function requires 

45 segments.  The values of x that are tested in Table 18 are the endpoints of the segment 

and therefore have the worst case5 approximation error.  At the very bottom of Table 18 

is 242ε −=  in decimal.  The last column shows the approximation error is consistently 

smaller thanε ; per the design. 

 

                                                 
5 If the x input to the NFG were somewhere in the middle of the segment, the approximation error 

would be smaller. There are four points in a segment with worst case approximation error.  Figure 10 is a 
good example to see the distribution of the approximation error on a non-uniform segment. 
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194 clocks
396 clocks NFG SRC OUTPUT Excel SRC-Excel NFG-Excel

x: 0.065896761049 0.398076980336 0.398077040911 0.398077039931 0.000000000979 -0.000000059595
x: 0.113411555833 0.396384819146 0.396384894848 0.396384878748 0.000000016100 -0.000000059601
x: 0.155068672183 0.394174398848 0.394174486399 0.394174458446 0.000000027952 -0.000000059598
x: 0.193392483833 0.391551192645 0.391551256180 0.391551252249 0.000000003931 -0.000000059604
x: 0.229466279456 0.388576167409 0.388576239347 0.388576227007 0.000000012340 -0.000000059598
x: 0.263888271986 0.385290687187 0.385290741920 0.385290746785 -0.000000004864 -0.000000059597
x: 0.297033228393 0.381725674206 0.381725728512 0.381725733800 -0.000000005288 -0.000000059593
x: 0.329159950016 0.377905230684 0.377905279398 0.377905290287 -0.000000010889 -0.000000059603
x: 0.360453699018 0.373849440845 0.373849511147 0.373849500448 0.000000010698 -0.000000059604
x: 0.391055896896 0.369575196048 0.369575262070 0.369575255651 0.000000006419 -0.000000059603
x: 0.421076852419 0.365097238417 0.365097314119 0.365097298012 0.000000016107 -0.000000059595
x: 0.450608489560 0.360428130051 0.360428184271 0.360428189648 -0.000000005377 -0.000000059598
x: 0.479725761713 0.355579258917 0.355579316616 0.355579318519 -0.000000001902 -0.000000059601
x: 1.010456600772 0.239440565640 0.239440649748 0.239440625229 0.000000024519 -0.000000059589
x: 1.039409823988 0.232439528403 0.232439562678 0.232439587993 -0.000000025315 -0.000000059590
x: 1.068692559293 0.225374753587 0.225374817848 0.225374813189 0.000000004659 -0.000000059602
x: 1.098347233137 0.218248244336 0.218248322606 0.218248303940 0.000000018667 -0.000000059604
x: 1.128421928829 0.211061263284 0.211061343551 0.211061322887 0.000000020664 -0.000000059603
x: 1.158970386539 0.203814501730 0.203814581037 0.203814561328 0.000000019709 -0.000000059597
x: 1.190056245939 0.196507285750 0.196507364511 0.196507345350 0.000000019161 -0.000000059600
x: 1.221750217779 0.189138515593 0.189138561487 0.189138575189 -0.000000013702 -0.000000059596
x: 1.254138569173 0.181705027166 0.181705087423 0.181705086768 0.000000000655 -0.000000059602
x: 1.287320295169 0.174202711977 0.174202784896 0.174202771576 0.000000013320 -0.000000059599
x: 1.321418432469 0.166624545576 0.166624620557 0.166624605173 0.000000015384 -0.000000059598
x: 1.356585716292 0.158960217743 0.158960267901 0.158960277339 -0.000000009438 -0.000000059596
x: 1.393018722519 0.151194300960 0.151194363832 0.151194360555 0.000000003277 -0.000000059595
x: 1.414213562373 0.146762652495 0.146762669086 0.146762663174 0.000000005913 -0.000000010679
x: 0.065896761049 0.398076980336 0.398077040911 0.398077039931 0.000000000979 -0.000000059595
x: 0.113411555833 0.396384819146 0.396384894848 0.396384878748 0.000000016100 -0.000000059601
x: 0.155068672183 0.394174398848 0.394174486399 0.394174458446 0.000000027952 -0.000000059598
x: 0.193392483833 0.391551192645 0.391551256180 0.391551252249 0.000000003931 -0.000000059604
x: 0.229466279456 0.388576167409 0.388576239347 0.388576227007 0.000000012340 -0.000000059598
x: 0.263888271986 0.385290687187 0.385290741920 0.385290746785 -0.000000004864 -0.000000059597
x: 0.297033228393 0.381725674206 0.381725728512 0.381725733800 -0.000000005288 -0.000000059593
x: 0.329159950016 0.377905230684 0.377905279398 0.377905290287 -0.000000010889 -0.000000059603
x: 0.360453699018 0.373849440845 0.373849511147 0.373849500448 0.000000010698 -0.000000059604
x: 0.391055896896 0.369575196048 0.369575262070 0.369575255651 0.000000006419 -0.000000059603

2^-24 Accuracy 0.000000059605  

Table 18. Comparison between SRC macro and NFG; numeric function
2

21
2

x

e
π

−
, 

N=1,000,000 and 242ε −= . 

 

2. Fixed Point Implementation 
As mentioned before, the advantage of using fixed point is the reduction in 

hardware and the reduced pipeline depth.  The disadvantage is that is takes more work to 

program.  

Macros may be used to define certain behavior that is easier to describe in HDL 

or to provide special functionality that is not available in regular programming.  In the 

NFG, the multiplier is limited by the 64 bit architecture.  The product of two 64 bit 
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numbers does not give the user access to all 128 bits in the product.  HDL can be used to 

manipulate and access the desired bits. 

 

a. No Macro Multiplier (non-uniform) 
The fixed point implementation without a macro is exactly the same as the 

fixed point implementation with only one exception; the indexing in non-uniform 

segmentation is accomplished using the user callable macro, priority selector, available in 

the SRC. 

 
###################################################################### 
##################        INNER LOOP SUMMARY      #################### 
loop on line 46: 
    clocks per iteration:    1 
    pipeline depth:         28 
###################################################################### 
###############        PLACE AND ROUTE SUMMARY    #################### 
  Number of Slice Flip Flops:       8,283 out of  67,584   12% 
  Number of 4 input LUTs:          12,331 out of  67,584   18% 
  Number of occupied Slices:       11,256 out of  33,792   33% 
  Number of MULT18X18s:                30 out of     144   20% 
  freq = 100.2 MHz 
###################################################################### 

Table 19. Pipeline depth, place and route summary for ln( )x− , N=1,000,000 and 242ε −= .  
Non-uniform segmentation using priority selector macro. 

 

b. Macro Multiplier Implementation 
The goal is to build a multiplier in VHDL or Verilog that can successfully 

multiply in two’s complement and provide a result that is already shifted into the number 

system chosen for fixed point.  Specifically, we want a product that is 32 bits integer and 

32 bits fraction.   

Several multipliers were built.  The multipliers function correctly in 

simulation on PC’s using Xilinx ISE, Project Navigator and Modelsim simulating 

software.  However, when the VHDL or Verilog files were compiled on the SRC, the 

products were not correct.  This version was implemented, but it did not produce correct 

products.   
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Appendix B shows the VHDL code for a 32x32 bit multiplier with a 32 bit 

product.  The design instantiates the 18x18 signed multiplier primitive.  The design 

makes use of a modified I/O pipeline design from a Xilinx application note [22]. 

Appendix B also shows the Verilog file for a 64x64 bit multiplier with a 

64 bit product.  The 64x64 bit multiplier makes use of the source code for the 64x64 bit 

multiplier macro designed by SRC. 

 

C. SOURCES OF ERROR 
The floating point implementation has only errors associated with the MATLAB 

computed values and the restrictions placed onε .  When implemented in the SRC, 

double precision accurately represents what is expected from the values fed into the NFG 

and the coefficients table. 

The fixed point implementation had errors due to several reasons.  We explore 

some of those reasons for error in the NFG as a whole. 

 

1. Function Approximation 
Both floating point and fixed point have to work with approximation error.  This 

is discussed in detail in section II B (Segmentation). 

 

2. Absence of Rounding in the Multiplier 

The fixed point implementation of the NFG shifts binary bits and truncates lower 

and upper bits.  This introduces error in computing the products and these errors 

propagate to the final answer. 

 

3. Insufficient Bits 

Insufficient bits to represent the full product means that the numbers have to be 

shifted and truncated.  This limits the ability for the NFG.  
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D. SUMMARY 

The NFG implementation of the uniform segmentation using floating point 

number system has a pipeline depth of 84 or 98 depending on whether the begin point of 

the domain interval is zero or non-zero (zero is preffered).  This implementation must 

read a memory file containing the polynomial coefficients into OBM.  Aside from these 

requirements, the NFG implemented in uniform segmentation and floating point number 

systems, provides advantages over using the available user callable macros and the math 

operators.  It can be implemented in very high precision, shorter pipeline depth and in 

some cases less hardware. 

Another advantage of the uniform segmentation is that once compiled, the NFG 

can compute any of the 15 functions.  The memory file with the coefficients must be 

available.   

The NFG non-uniform implementation has a shorter pipeline depth, but requires 

much hardware to implement the segment index encoder.  The segment index encoder is 

limited to approximately 150 segments in this design.  Depending on the function, the 

precision can be increased as long as the number of segments does not exceed 

approximately 150. 

The fixed point implementation requires a rounding macro and a good macro 

multiplier to provide the desired product bits and make it effective.  However, it provides 

a significantly smaller pipeline depth than the floating point implementation. 

A real advantage of the NFG is when very complicated numeric functions need to 

be implemented; the NFG has a constant pipeline depth unlike the more complicated 

functions that have long pipeline depths. 

More research is required to realize a complete NFG design.  Section VI discusses 

some suggestions for future work. 
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VI. CONCLUSION 

A. SUMMARY OF WORK 
An efficient and fast segmentation of numeric functions was accomplished in 

MATLAB.  Table 20 shows the number of tests (calls to chebyRemz) required to segment 

the suite of 15 functions.  

 
Epsilon = 0.0000000596 = 2^-24.0.    N =  1000000 
 
   Function         Interval     %Of tests    # of Segments 
          2^x             [0,1]    0.00910           35 
         1./x             [1,2]    0.01020           50 
       sqrt(x)            [1,2]    0.00750           24 
     1/sqrt(x)            [1,2]    0.00720           36 
       log2(x)            [1,2]    0.00900           44 
        log(x)            [1,2]    0.00780           39 
     sin(pi*x)          [0,1/2]    0.01990           58 
     cos(pi*x)          [0,1/2]    0.01740           58 
     tan(pi*x)          [0,1/4]    0.01240           58 
sqrt(-log(x...      [1/512,1/4]    0.04070          163 
tan(pi*x).^...          [0,1/4]    0.02180           79 
-(x*log2(x)...  [1/256,1-1/256]    0.04710          183 
1/(1+exp(-x...            [0,1]    0.00920           20 
(1/sqrt(2*p...      [0,sqrt(2)]    0.01670           45 
   sin(exp(x))            [0,2]    0.07810          265 
******************************************************** 

Table 20. Speed-up in computation time for 15 functions (expressed as a percentage of the 
time needed when the domain is divided into 1,000,000 points) for 242ε −=  

 

The NFG circuit built in the SRC was very effective in floating point.  The 

computation of numeric functions in the NFG was shown to obtain accuracy of up to 33 

bits.  Higher accuracy is possible at the cost of increasing the size of the memory files 

required to store the coefficients.   

Floating point implementation was easier to build on the SRC than the fixed point 

implementation.  However, floating point implementation takes up a large amount of 

FPGA resources.   
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The NFG is a useful technique to compute complicated numeric functions that 

would otherwise require a combination of several other arithmetic operations.  The more 

demanding the numeric function the more reason to use the NFG instead.  The NFG is 

more efficient in 10 out of the 15 functions that were investigated in this thesis (when 

using the non-uniform segmentation). 

The fixed point implementation did not produce all of the desired results.  The 

multiplication required more programming than the floating point implementation 

required, but the results had errors due to rounding and truncating the intermediate and 

final results.  This area needs more research to improve.  The advantage of fixed point 

implementation is that it requires much less hardware than floating point and therefore 

can reduce the pipeline depth to about 30% of the pipeline depth required by the floating 

point implementation. 

 

B. SUGGESTED FUTURE WORK 

1. Hybrid of Uniform and Non-Uniform Segmentation 
Uniform segmentation is much faster and less complicated than non-uniform 

segmentation.  Although non-uniform segmentation may not be practical on its own, a 

hybrid of non-uniform and uniform segmentation would take advantage of the strengths 

of each.   

Consider a numeric function that is not suitable for uniform segmentation, such 

as ln( )x− , which appears in Figure 4 to demonstrate this fact.  In the non-uniform 

segmentation of the same function; such as Figure 2, the restricting portion is the 

beginning of the segment.  Therefore to capture the most restricting part of the numeric 

function, segment the numeric function into a few non-uniform segments.   

A good starting point is to determine an upper limit for the total number of 

constant segments.  Let us decide on 400 segments.  If we dedicate 100 constant 

segments to the first portion of the numeric function ln( )x− , then change the segment 

size for another 100 constant segments and repeat this process four or five times, we will 

have five non-uniform segments each containing a set of uniform segments.   
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This method would provide three advantages: 

1. Relieve the segmentation constraint from the most restricting segment.  

2. The segment index encoder would be small (5 groups of segments) and save  

     FPGA space. 

3. The indexing would be less complex once the input has been mapped to the  

     correct group of segments.  

 

 
2. Expand the Domain of the NFG via Mapping 
The functions investigated in this thesis have a limited domain interval.  To make 

the functions useful for a wide range of applications, the domain interval should be 

increased.  Theoretical research is being conducted in this field [21]. 

 

3. Build an HDL Multiplier Macro and Tap of Desired Bits 

If the multiplier in fixed point were built in a macro, the desired bits could be 

tapped off.  This implementation would be both fast and accurate. 

 

3. Build a Rounding Macro 

A macro can be built to round off shifted values in the fixed point implementation 

instead of truncating the values.  This would improve the accuracy in the output of the 

products and the final result of the NFG. 

 

4. Efficient Segment Index Encoder vice Priority Selector Macros 
The priority selectors are fast and work well, but take up a lot of hardware.  

Combined with the other hardware in the NFG, the priority selectors take up all the 

resources and limit the accuracy and flexibility of the NFG to handle all the functions.  

An implementation that uses a more efficient method for the segment index encoder 

would benefit the NFG. 

Sasao, Butler have three suggestions; (1) LUT cascade, (2) Content addressable 

memory and (3) EVBDD. 
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5. Different Architecture 

If FPGA resources became scarcer and one wanted to implement a larger 

coefficients table, the only way to make room is to remove the major consumers of real 

estate.  In the NFG, it would be the segment index encoder that is implemented as a 

priority selector macro and the multipliers.  We have already discussed possible solutions 

to removing large selectors. 

Using Horner’s rule, a multiplier can be eliminated from the NFG.  Equation (0.5) 

shows how to apply Horner’s rule to the NFG. 

 

 2
2 1 0 2 1 0( ) ( )f x c x c x c c x c x c= + + = + +  (0.5) 

 

The NFG hardware would add one more adder stage, however if the segment 

index encoder were able to work in one or two clocks, this would be a speed-up from the 

previous architecture as long as the adder stages take fewer clocks than the multipliers.    

Floating point adders can take as many clocks as the multipliers, but in two’s 

Complement or signed magnitude, the adders are faster than the multiplier.  

In the previous architecture, 2x takes many more clocks than the segment index 

encoder and adds to the pipeline depth. 

Figure 22 shows an overview of the NFG architecture when Horner’s rule has 

been applied. 
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Figure 22. Horner’s rule NFG architecture overview. 

 



 78

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 79

APPENDIX A. MATLAB ALGORITHMS 

The following MATLAB Code generates the segmentation for any function; 

however a user interface has been added for convenience.  The user simply picks a 

number instead of re-typing the entire function or the interval for evaluation.  The 

interface limits the MATLAB Code to the suite of functions found in Table 1. 

 

A.1 QUADRATIC APPROXIMATION USING POLYFIT 
This code implements the quadratic approximation using the MATLAB function 

Polyfit.  There are 6 files needed to run the non-uniform and uniform segmentation: 

QuadAppxPfit.m, multipleQuadApprox.m, varQuadApprox.m, dec2binfp.m, 

constantQuadApprox.m, and  constQuadAppxWErr.m. 

QuadAppxPfit.m is the top function where the program starts and ends.  All the 

other files are child functions that provide the segmentation data back to this file for 

presentation / file storage. 

multipleQuadApprox.m calls the non-uniform segmentation algorithms to collect 

the data for the segment endpoints and coefficients. 

varQuadApprox.m tests proposed segments and reduces finds the optimum width 

of the segment by testing the approximation error  to ε . 

dec2binfp.m is the file that converts decimal numbers into binary.  This is limited 

to converting one integer value and only up to 9 binary bits of accuracy.   

constantQuadApprox.m is used for uniform segmentation when the number of 

segment is known before hand.  The key requirement is to input the number of segments 

desired, the approximation error is unspecified. 

constQuadAppxWErr.m needs to have ε  specified, then this file will compute the 

uniform segmentation of the numeric function that meets the constraint ε .
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FILE: QuadAppxPfit.m 

%  Arbitrary_PW_Quadratic_Approx.m 
%  Created: January 6, 2006 (from Arbitrary_PW_Linear_Approx.m) 
%  Last modified:  October 20, 2006 
%  Produced by: Tom Mack & Jon Butler 
%  Modified by: Njuguna Macaria for quadratic approximation 
% 
% This program produces a segmentation of a given function using either: 
%               1. Uniform piecewise Quadratic approximation 
%               2. Non-uniform piecewise Quadratic approximation 
%               3. Both 
% 
% It is based on the algorithm: 
%               1. For non-uniform, the MATLAB polyfit function 
%               2. For uniform, dividing the range of the input into 
%                   equal, user-defined segments 
%                   or by using max error to determine max segment length 
%                   at the greatest curvature and then dividing the range 
%                   up into equal segments. 
%                   All with intercept shifting to balance the positive  
%                   and negative error 
% 
%  Inputs 
%            N - number of elements on which function is expressed 
%         f(x) - function to be evaluated 
%        x_low - low end of interval over which f(x) is evaluated 
%       x_high - high end of interval over which f(x) is evaluated 
%      epsilon - precision of approximation (for variable only) 
%      consegs - number of segments to use to approximate (constant only) 
% 
%  Outputs 
%      Segment info - Segment #, Begin Pt, End Pt, Coefficients, & Error 
%      Plot showing the approximation 
%      Text file used to initialize memory in SRC (both Binary & Decimal) 
% 
%%%%%%%%%%%%%%%%%%%%% INPUT OF USER-SPECIFIED PARAMETERS %%%%%%%%%%%%%%%%%% 
clear 
close all 
format long g 
fprintf('\n'                                                              ) 
fprintf('\n**************************************************************') 
fprintf('\n'                                                              ) 
fprintf('\n     QUADRATIC APPROXIMATION OF A FUNCTION USING POLYFIT '     ) 
fprintf('\n'                                                              ) 
fprintf('\n'                                                              ) 
%% Get FUNCTION to be approximated (user input) 
func = input( 'Input the Function, func[sqrt(-1*log(x))]:  ','s'); 
if isempty(func) 
    func = 'sqrt(-1*log(x))';   %% default  
end 
 
%% Get LOW range (user input) 
x_low = input( 'Input the Lower Range of x - LOW value, x(low)[1/256]:  '); 
if isempty(x_low) 
    x_low = 1/256;                  %% default 
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end  
 
%% Get HIGH range (user input) 
x_high = input( 'Input the Higher Range of x - HIGH value, x(high)[1/4]:'); 
if isempty(x_high) 
    x_high = 1/4;                 %% default 
end 
 
%% Get CONSTANT OF VARIABLE segmentation (User input) 
vari_or_const = 0; 
while vari_or_const ~= 1 && vari_or_const ~= 2 && vari_or_const ~= 3 
    vari_or_const = ... 
        input( '(1)Non-uniform (2)Uniform Segmentation or (3)Both [1]:'); 
    if isempty(vari_or_const) 
        vari_or_const = 1;      %% default Non-uniform 
    end 
end 
 
%% If non-uniform segmentation, then enter ERROR parameters 
if vari_or_const ~= 2 
    epsilon = input( 'Input the Desired Error, epsilon[0.0001]:  '); 
    if isempty(epsilon) 
        epsilon = 0.0001;        %% default 
    end 
end 
 
%% If uniform segmentation, find how the user will restrict # of segments 
if vari_or_const == 2 
    err_or_segs = ... 
        input( 'Constrain by (1)Number of Segments or (2)Error [1]:   '); 
    if isempty(err_or_segs) 
        err_or_segs = 1;        %% default 
    end 
    if err_or_segs == 1 
        consegs = input( 'Input the number of Desired Segments[100]:  '); 
        if isempty(consegs) 
            consegs = 200;       %% default 
        end 
    end 
    if err_or_segs == 2 
        epsilon = input( 'Input the Desired Error, epsilon[0.0001]:  '); 
        if isempty(epsilon) 
            epsilon = 0.0001;    %% default 
        end 
    end 
end 
 
N = input( 'Input the no. of pts the fct is to be evaluated; N[10000]:  '); 
if isempty(N) 
    N = 10000;                  %% default 
end 
 
% eqn = input( 'Input the equation to use:  
%                (1)F(x)=ax^2+bx+c or (2)F(x)=a(x-p)^2+b(x-p)+c, [1]:  '); 
% if isempty(eqn) 
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%   eqn = 1;                    %% default 
%end 
 
eqn = 1; 
 
 
%%% Based on the number of points to be used for the curve, find the  
%%% x values to calculate and spread over the approximating function 
N = N * (x_high - x_low); 
x = linspace(x_low, x_high, N); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%% NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  The segments in this program do NOT overlap (i.e.  the first element of  
%  the NEXT segment is NOT the last element of the LAST segment. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
eval(['F = ', func, ';'])    % Evaluate the function and place values in F 
 
%Print demarcation line 
fprintf('\n**************************************************************') 
fprintf('\n') 
%%%%%%%%%%%%%%%%%%%%%%%%  Segmentation Algorithm  %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%   REPEAT FOR EACH i   %%%%%%%%%%%%%%%%%%%%%%%%%% 
repeat = 1; 
while repeat == 1 
    if (mod(vari_or_const,2) == 1) 
        [endpt,seg_end_point,c_2,c_1,c_0] = multipleQuadApprox(x,F,epsilon); 
    end 
    if (vari_or_const == 2) && (err_or_segs == 1) 
        [endpt,seg_end_point,c_2,c_1,c_0] = constantQuadApprox(x,F,consegs); 
    end 
    if ((vari_or_const == 2) && (err_or_segs == 2)) || (vari_or_const == 4) 
        [endpt,seg_end_point,c_2,c_1,c_0] = constQuadAppxWErr(x,F,epsilon); 
    end 
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Compute and plot function, approximate function and error           % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    ind = 1;                             % Index for each segment 
    for i = 1:length(seg_end_point); 
        m     = 1;                       % Index within each segment 
        XP    = []; 
        FP    = []; 
        Error = []; 
        while (ind < seg_end_point(i)) 
            XP(m)    = x(ind); 
            FNC(m)   = F(ind);           % Actual function (Fct No correction) 
            FP(m)    = c_2(i)*((x(ind)).^2)+c_1(i)*x(ind) + c_0(i); % Approx 
            Error(m) = FNC(m) - FP(m); 
            ind      = ind + 1; 
            m        = m + 1; 
        end %while 
 
        MaxError(i) = max(abs(Error));          % Keep track of all errors 
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        if (mod(i,2) == 0)  % Plot every other segment a different color 
            figure(mod(vari_or_const,2)+1)      %% Blue 
            plot(XP,FP) 
            figure(mod(vari_or_const,2)+3)      %% Blue 
            plot(XP,Error) 
        else 
            figure(mod(vari_or_const,2)+1) 
            plot(XP,FP,'r','LineWidth',2)       %% Red 
            figure(mod(vari_or_const,2)+3) 
            plot(XP,Error,'r','LineWidth',2)    %% Red 
        end %if (mod(i,2) == 0) 
        figure(mod(vari_or_const,2)+1) 
        hold on 
        xlabel('x','FontSize',10) 
        ylabel('f(x)','FontSize',10) 
        if (mod(vari_or_const,2) == 1) 
            title(['NON-UNIFORM f(x) segmentation. No. of segments = ',... 
                num2str(length(seg_end_point)),'.'],'FontSize',10) 
        elseif (mod(vari_or_const,2) == 0) 
            title(['UNIFORM f(x) segmentation. No. of segments = ',... 
                num2str(length(seg_end_point)),'.'],'FontSize',10) 
        end 
        figure(mod(vari_or_const,2)+3) 
        hold on 
        xlabel('x','FontSize',14) 
        % Pick the maximum error from all the segments 
        ylabel(['Error(x). Max Error = ',num2str(max(MaxError)),'.'],... 
            'FontSize',10) 
        if (mod(vari_or_const,2) == 1) 
            title(['Error for NON-UNIFORM f(x) segmentation. No. of segs = ',... 
                num2str(length(seg_end_point)),'.'],'FontSize',10) 
        elseif (mod(vari_or_const,2) == 0) 
            title(['Error for UNIFORM f(x) segmentation. No. of segs = ',... 
                num2str(length(seg_end_point)),'.'],'FontSize',10) 
        end 
    end %for i = 1:length(seg_endpt) 
    figure(mod(vari_or_const,2)+1) 
    plot(x,F)   % Plot function on same figure as piecewise approximation 
    stem(x(seg_end_point),F(seg_end_point)) 
    hold off 
 
    %%%%%%%%    Decimal to Binary Conversion Algorithm   %%%%%%%%%%%%%%%%%% 
    % Convert string end points, c_1 and c_0 into a binary string with 1 
    % integer bit and 8 fraction bits and print results table. 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if (mod(vari_or_const,2) == 1) 
        fprintf('\n NON-UNIFORM Segmentation') 
    elseif (mod(vari_or_const,2) == 0) 
        fprintf('\n UNIFORM Segmentation') 
    end 
    if eqn == 1 
        fprintf('\n Segment   End Point   End Point           c_2     ',... 
            'c_2                  c_1        c_1                 c_0  ',... 
            'c_0') 
        fprintf('\n Number    (Decimal)   (Binary)            (Decimal)',... 
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            '(Binary)            (Decimal)  (Binary)            ',... 
            '(Decimal)  (Binary)') 
    end 
 
    for i = 1:length(seg_end_point) 
        xbin(i)      = dec2binfp(x(seg_end_point(i))); 
        segment(i+1) = x(seg_end_point(i));    % Used in next program 
        c_2bin(i)    = dec2binfp(c_2(i)); 
        c_1bin(i)    = dec2binfp(c_1(i)); 
        c_0bin(i)    = dec2binfp(c_0(i)); 
        if eqn == 1 
            % Print Remaining Results Table 
            fprintf('\n    %3d     %8.6f    %019.9f %10.5f    %019.9f ',... 
                '%10.5f    %019.9f %10.5f    %019.9f', i-1,  ... 
                x(seg_end_point(i)), xbin(i), c_2(i), c_2bin(i), c_1(i),... 
                c_1bin(i), c_0(i), c_0bin(i)) 
        end % if eqn == 1 
    end %for i = 1:length(seg_end_point) 
 
    % Create text file of Binary values to initialize memory 
    memBin = [c_2bin .* 10^9; c_1bin .* 10^9 ; c_0bin .* 10^9]; % Memory with 
bin 
    fid    = fopen('memory.mem','w'); 
    fprintf (fid,'\n%018.0f%018.0f%018.0f',memBin); 
    fclose  (fid); 
 
    % Create text file of Decimal Values to initialize memory 
    fid    = fopen('memDEC.mem','w'); 
    format long g; 
    fprintf(fid,'%5d', length(seg_end_point));        % Number of Segments 
    memDEC = [segment(2:end); c_2; c_1; c_0] 
    fprintf(fid,'\n%18.12f %18.12f %18.12f %18.12f',memDEC); 
    fclose (fid); 
 
    %End text file creation 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if eqn == 2 
        %%%%%%%%%%%%%%%%% The following created from:  Extract_PL_Params.m 
        % 
        % This program extracts from the segmentation and the function, the 
        %       1.  Squared term coefficient 
        %       2.  Linear term coefficient 
        %       3.  Constant 
        %        
        % 
        % which are the parameters needed to store in the coefficients  
        % memory.  It produces the BINARY values of these parameters. 
        % 
        % The segmentation occurs as a vector of end points. 
        % 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        fprintf('\n') 
        
fprintf('\n**************************************************************') 
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        fprintf('\n') 
        segment(1) = 0; 
        for i = 1:length(segment) 
            seg_index(i) = floor(N*segment(i)/(x_high-x_low))+1; 
        end %for i = 1:length(segment) 
        seg_index; 
        for i = 2:length(segment) 
            slope(i-1)     = (F(seg_index(i)-1) - F(seg_index(i-1)))/... 
                             (x(seg_index(i)-1) - x(seg_index(i-1))); 
            intercept(i-1) = F(seg_index(i)-1) - slope(i-1)*x(seg_index(i)-1); 
            a              = max(F(seg_index(i-1):seg_index(i)-1) ... 
                             - (slope(i-1).*x(seg_index(i-1):seg_index(i)-1)... 
                             + intercept(i-1) )    ); 
            b              = min(F(seg_index(i-1):seg_index(i)-1) ... 
                             - (slope(i-1).*x(seg_index(i-1):seg_index(i)-1)... 
                             + intercept(i-1) )    ); 
            error(i-1)     = 0.5*(a + b);   %YES, it is a + b.   
            intercept(i-1) = intercept(i-1) + error(i-1) + slope(i-1)*segment(i-
1); 
            s_m_e(i-1)     = segment(i) - segment(i-1); 
            c1x(i-1)       = s_m_e(i-1)*slope(i-1); 
            approx(i-1)    = c1x(i-1) + intercept(i-1); 
            exact(i-1)     = 2^segment(i); %Exact value of f(x) at end of 
segment. 
        end %for i = 2:length(segment) 
        fprintf('\nDECIMAL values for Approx = slope*(x - pivot) + intercept.') 
        fprintf('\nseg no.  [s,  e]         slope   intercept     ',... 
            'pivot  approx_error    e-s    (e-s)*slope (e-s)',... 
            '*slope+intercept exact f(x)\n') 
        for i = 1:length(segment)-1 
            fprintf('%1.0f [%8.6f  %8.6f] %8.6f   %8.6f   %8.6f  %8.6f',... 
                '%8.6f  %8.6f      %8.6f      %8.6f \n', i-1, segment(i),... 
                segment(i+1), slope(i), intercept(i), segment(i), error(i),... 
                s_m_e(i), c1x(i), approx(i), exact(i)) 
        end %for i = 1:length(segment)-1 
        %hold on 
        %plot(x(1:N),slope(1).*x(1:N)+intercept(1)) 
        %Convert s, e, slope, intercept, and pivot to binary. 
        fprintf('\nBINARY values') 
        fprintf('\nseg no.      [s,  e]             slope      intercept',... 
            'approx_error    e-s    (e-s)*slope (e-s)*sl+intercept exact 
f(x)\n') 
        for i = 1:length(segment)-1 
            digits         = ceil(log2(length(segment)-1)); 
            s_seg_no       = dec2bin(i-1,digits); 
            s_s(i)         = dec2binfp(segment(i)); 
            s_e(i)         = dec2binfp(segment(i+1)); 
            s_slope(i)     = dec2binfp(slope(i)); 
            s_intercept(i) = dec2binfp(intercept(i)); 
            if error(i) < 0; 
                error(i) = abs(error(i)); 
            end % if error(i) < 0; 
            s_error(i)  = dec2binfp(error(i)); 
            s_s_m_e(i)  = dec2binfp(s_m_e(i)); 
            s_c1x(i)    = dec2binfp(c1x(i)); 
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            s_approx(i) = dec2binfp(approx(i)); 
            s_exact(i)  = dec2binfp(exact(i)); 
            fprintf('%s [%10.8f %10.8f] %10.8f %10.8f %10.8f %10.8f',... 
                '%10.8f %10.8f %10.8f \n', s_seg_no, s_s(i), s_e(i), ... 
                s_slope(i), s_intercept(i),s_error(i),s_s_m_e(i), ... 
                s_c1x(i), s_approx(i), s_exact(i)) 
        end %for i 
    end % if eqn == 2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    fprintf('\n') 
    fprintf('\n**************************************************************') 
    fprintf('\n') 
    if vari_or_const ~= 3 
        repeat = 0; 
    end 
    if vari_or_const == 3 
        vari_or_const = 4; 
    end 
end % while repeat = 1 
% End file: QuadAppxPfit.m 
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FILE: multipleQuadApprox.m 
function [endpt,indx,c2,c1,c0] = multipleQuAdapprox(x,fct,max_error) 
 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function will produce multiple Quadratic-line approximations of a 
% given function to within the bounds of max error provided. 
% Created by Tom Mack for linear approximations 
% Created: Mar 31, 2006 
% 
% Modified for Quadratic approximations by Njuguna Macaria 
% Modified: Dec 30, 2006 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
i      = 1; 
indx   = 1;  
seg_no = 1;  
endpt  = [];  
c2     = []; 
c1     = [];  
c0     = []; 
 
while i < length(fct) 
    [endpt(seg_no),indx(seg_no),c2(seg_no), c1(seg_no),c0(seg_no)] = 
varQuadApprox(x,fct,max_error,i); 
    i      = indx(seg_no) + 1; 
    seg_no = seg_no       + 1; 
end 
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FILE: varQuadApprox.m 
function [endpt,i,c2,c1,c0] = varQuadApprox(x,fct,max_error,indx) 
% This function creates a 2nd Order approximation of a given function 
% using the polyfit function. It continues to calculate polyfits until 
% maximum error is exceeded. 
% Linear approximation Created by Tom Mack >> Mar 31, 2006 
% 
% Modified for Quadratic approximation by Njuguna Macaria  
% Modified: Dec 29, 2006 
 
for i=indx:length(fct); 
    p = polyfit(x(indx:i),fct(indx:i),2); % Fit equ to 2nd order poly 
    c_2(i) = p(1);                        % Coefficient of X^2 
    c_1(i) = p(2);                        % Coefficient of X 
    c_0(i) = p(3);                        % Intercept of polynomial 
 
    approx(indx:i) = p(1)*(x(indx:i)).^2 + p(2)*x(indx:i) + p(3); 
    errors         = approx(indx:i) - fct(indx:i); 
% %     maxposerror    = max(errors); 
% %     maxnegerror    = min(errors); 
% % %     c_0delta(i)    = abs((abs(maxposerror) - abs(maxnegerror))/2); 
% %  
% %     % If the negative error is bigger, then the delta should be negative 
% %     if abs(maxnegerror) > abs(maxposerror) 
% %         c_0delta(i)= -1 * c_0delta(i); 
% %     end % if 
     
% % %     approx(indx:i) = approx(indx:i) - c_0delta(i); 
% % %     errors         = approx(indx:i) - fct(indx:i); 
    error          = max(abs(errors)); 
 
    % If exceeded the max error, then go back to the previous endpoint 
    if error > max_error 
        i     = i-1; 
        endpt = x(i); 
        c2    = c_2(i); 
        c1    = c_1(i); 
        c0    = c_0(i); 
        return 
    end % if error > max 
end % for i=indx+1:length(fct) 
 
 
endpt = x(i); 
c2    = c_2(i);    % Removed i = i-1; 
c1    = c_1(i); 
c0    = c_0(i); 
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FILE: dec2binfp.m 
function [binfp] = dec2binfp(x,n) 
% This function converts a decimal number to a fixed point binary number 
% with one integer followed by n points to the right of the decimal 
%  
% Created by Tom Mack 
% Last modified: August 22, 2006 
% 
% Inputs 
%   x = decimal number to be converted (does not have to be an integer) 
%   n (optional, default 9) = bit resolution to the right and left of decimal pt 
% Outputs 
%   binfp = binary floating point representation 
%   Negative inputs are output in 18-bit (9.9) format 
% 
if nargin < 2, n = 9; end 
if isnan(x) == 1, 
    binfp = NaN; 
    return 
elseif x == Inf 
    binfp = Inf; 
    return 
elseif x < 0, 
    x = (x * 2^n) + 2^(2*n); 
    x = dec2bin(x,18); 
    x = str2double(x); 
    x = x / 10^n; 
    binfp = x; 
    return 
else 
    x = x * 2^n; 
    x = dec2bin(x,18); 
    x = str2double(x); 
    x = x / 10^n; 
    binfp = x; 
end 
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FILE: constQuadAppxWErr.m 
function [endpt,indx,c2,c1,c0] = constQuadAppxWErr(x,fct,max_error) 
 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function will produce multiple Quadratic-line approximations of a 
% constant size of a given function to within the bounds of the 
% max error provided.  Coefficients & intercept calculated using polyfit. 
% Intercept adjusted to balance max positive and negative errors. 
% Created by Tom Mack for linear approximations 
% Created:  July 10, 2006 
% Modified: July 11, 2006 
% Modified again by Njuguna Macaria for Quadratic approximations 
% Modified: Dec 30, 2006 
% 
% Compute # of segs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
firstderiv = diff(fct)./diff(x); 
secndderiv = diff(firstderiv)./diff(x(1:length(firstderiv))); 
[dermax,i] = max(abs(secndderiv)); 
error      = 0; 
loop_stop  = 0; 
i_low      = i - 1; 
 
if i_low <= 0 
    i_low = 1; 
end 
 
i_high = i + 1; 
 
if i_high > length(fct) 
    i_high = length(fct); 
end 
 
% If error is too small, increase until just under the max error 
% This gives the max size of the segment within the desired error 
while error < max_error || loop_stop < length(fct) 
    i_low = i_low - 1; 
    if i_low <= 0 
        i_low = 1; 
    end 
    i_high = i_high + 1; 
    if i_high > length(fct) 
        i_high = length(fct); 
    end 
 
    % Get coefficients, approximate function and find error 
    % Adjust function based on the error (move it up or down) 
    p                    = polyfit(x(i_low:i_high),fct(i_low:i_high),2); 
    approx(i_low:i_high) = p(1)*(x(i_low:i_high)).^2 + ... 
                           p(2)*x(i_low:i_high) + p(3); 
    errors               = approx(i_low:i_high) - fct(i_low:i_high); 
    maxposerror          = max(errors); 
    maxnegerror          = min(errors); 
    c_0delta             = abs((abs(maxposerror) - abs(maxnegerror))/2); 
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    % Figure out if the error is posivive or negative and move the function 
    % to compensate and balance the error of the approximated function 
    if abs(maxnegerror) > abs(maxposerror) 
        c_0delta = -1 * c_0delta; 
    end % if 
 
    % Re-check the error and find the max error 
    approx(i_low:i_high) = approx(i_low:i_high) - c_0delta; 
    errors               = approx(i_low:i_high) - fct(i_low:i_high); 
    error                = max(abs(errors)); 
     
    % If error is larger than should be 
    if error > max_error 
        i_low  = i_low + 1; 
        i_high = i_high -1; 
    end 
    loop_stop  = loop_stop + 1; 
end 
segsize = i_high - i_low; 
consegs = ceil(length(fct)/segsize); 
 
% 
% Determine Coefficients of segments 
% 
idx=1; 
for i = 1:consegs 
    indx(i) = round((length(x)/consegs)*i); 
    if indx(i) == 0 
        indx(i) = 1; 
    end 
    if i==consegs 
        indx(i) = length(x); 
    end 
    endpt(i)            = x(indx(i)); 
    p                   = polyfit(x(idx:indx(i)),fct(idx:indx(i)),2); 
    approx(idx:indx(i)) = p(1)*(x(idx:indx(i))).^2 + ... 
                          p(2)*x(idx:indx(i)) + p(3); 
    errors              = approx(idx:indx(i)) - fct(idx:indx(i)); 
    maxposerror         = max(errors); 
    maxnegerror         = min(errors); 
    c_0delta            = abs(abs(maxposerror) - abs(maxnegerror))/2; 
    if abs(maxnegerror) > abs(maxposerror) 
        c_0delta = -1 * c_0delta; 
    end % if 
    c2(i) = p(1); 
    c1(i) = p(2); 
    c0(i) = p(3)- c_0delta;   % Constant shift to balance pos & neg error 
    idx   = indx(i)+1; 
    i     = i+1; 
end 
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FILE: constantQuadApprox.m 
function [endpt,indx,c2,c1,c0] = constantQuadApprox(x,fct,constsegs) 
%  
% This function will produce multiple Quadratic line approximations of a 
% given function to within the bounds of the number of segments provided. 
% Coefficients calculated by polyfit.  Intercept adjusted to balance 
% maximum positive and negative errors. 
% 
% Created by Tom Mack for linear approximations  
% Created: June 4, 2006 
% Modified for Quadratic approximations by Njuguna Macaria 
% Modified: July 11, 2006 
%  
 
idx=1; 
 
for i = 1:constsegs 
    indx(i) = round((length(x)/constsegs)*i); 
    if i==constsegs 
        indx(i) = length(x); 
    end 
    endpt(i) = x(indx(i)); 
    p        = polyfit(x(idx:indx(i)),fct(idx:indx(i)),2); 
 
    approx(idx:indx(i)) = p(1)*(x(idx:indx(i))).^2+p(2)*x(idx:indx(i))+p(3); 
    errors              = approx(idx:indx(i)) - fct(idx:indx(i)); 
    maxposerror         = max(errors); 
    maxnegerror         = min(errors); 
    c_0delta            = abs((abs(maxposerror) - abs(maxnegerror))/2); 
 
    if abs(maxnegerror) > abs(maxposerror) 
        c_0delta = -1 * c_0delta; 
    end % if 
    c2(i) = p(1); 
    c1(i) = p(2); 
    c0(i) = p(3)- c_0delta;   % Intercept shift to balance pos & neg error 
    idx   = indx(i)+1; 
    i     = i+1; 
end 
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A.2 QUADRATIC APPROXIMATION USING REMEZ ALGORITHM  

The thesis was designed using the Remez algorithm.  The following files were 

developed to compute he segmentation.  The top level file is QuadAppxRemz.m, which 

calls a set of user written MATLAB functions to display and request the user input 

(UserInput.m), obtain the numeric functions selected by the user and their respective 

domain intervals (getF.m) and then compute the segmentation. 

Non-uniform segmentation was performed by multipleQuadApprox.m in 

conjunction with varQuadApproxHyb3AvgThird.m and chebyRemz.m.  chebyRemz.m 

takes place of Polifit.m that is an optimized user callable MATLAB function shown in 

A.1 above.   

Uniform segmentation is performed by two other files.  If the number of segments 

is known without explicit input of ε , then constantQuadApprox.m is the file that is used.  

If on the other hand, ε  is defined and uniform segmentation is desired, then 

constQuadAppxWErr.m is the file that is used. 

The file twosComp.m was developed to convert the data to a two’s complement, 

fixed point binary, hexadecimal or decimal number.  Note the two’s complement decimal 

number is not the same as a float or double data type. 
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FILE: QuadAppxRemz.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  QuadAppxRemz.m                                                         % 
%  Created:         January 6, 2007                                       % 
%  Created by:      Njuguna Macaria                                       % 
%  Last modified:   Auguse  3, 2007                                       % 
%  Modified by:     Njuguna Macaria                                       % 
%                                                                         % 
% This program produces a segmentation of a given function using either:  % 
%               1. Uniform Quadratic approximation                        % 
%               2. Non-uniform piecewise Quadratic approximation          % 
%               3. Both                                                   % 
%                                                                         % 
% It is based on the algorithm:                                           % 
%               1. For non-uniform, the MATLAB Remez algorithm            % 
%                                                                         % 
%               2. For uniform, dividing the range of the input into      % 
%                   equal, user-defined segments                          % 
%                   or by using max error to determine max segment length % 
%                   at the greatest curvature and then dividing the range % 
%                   up into equal segments.                               % 
%                                                                         % 
%  Inputs                                                                 % 
%           Inputs are taken from an input function; "userInput();"       % 
%            N - number of elements on which function is expressed        % 
%          eqn - (1)F(x)=ax^2+bx+c OR PIVOT: (2)F(x)=a(x-p)^2+b(x-p)+c    % 
%        x_low - low end of interval over which f(x) is evaluated         % 
%       x_high - high end of interval over which f(x) is evaluated        % 
%      func(x) - function to be evaluated                                 % 
%      epsilon - precision of approximation (for variable only)           % 
%      consegs - number of segments to use to approximate (constant only) % 
%  err_or_segs - Constant segmentation; decide # of segments or err bound %       
%vari_or_const - Variable or constant segmentation                        % 
%                                                                         % 
%  Outputs                                                                % 
%      Segment info - Segment #, Begin Pt, End Pt, Coefficients, & Error  % 
%      Plot showing the approximation                                     % 
%      Text file used to initialize memory in SRC (both Binary & Decimal) % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%% INPUT OF USER-SPECIFIED PARAMETERS %%%%%%%%%%%%%%%%%% 
clear 
clc 
close all 
format long g; 
 
 
% Get user input 
% profile on        % For use when debugging.  Find runtimes 
sel = UserInput(); 
[f,interval,vari_or_const,err_or_segs,consegs,epsilon,N]=getF(sel); 
 
%%% Based on the number of points to be used for the curve, find the  
%%% x values to calculate and spread over the approximating function 
 
syms x 
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eval(['func = ', f, ';']) 
eval(['intv = ', interval, ';']) 
x_pts       = linspace(intv(1), intv(2), N); 
vecFunc     = inline(vectorize(func));    %Vectorized version of func. 
y_actual    = vecFunc(x_pts);             %Evaluate the function with x_pts 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                         % 
%  The segments in this program overlap (i.e.  the first element of       % 
%  the NEXT segment IS the last element of the LAST segment.              % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Print demarcation line 
fprintf('\n********************************************************\n') 
fprintf('\n') 
%%%%%%%%%%%%%%%%%%%%%%%%  Segmentation Algorithm  %%%%%%%%%%%%%%%%%%%%%%%%% 
repeat = 1; 
while repeat == 1 
    if (mod(vari_or_const,2) == 1) 
        [endpt,seg_end_point,c_2,c_1,c_0] = ... 
                   multipleQuadApprox(x_pts,func,epsilon); 
    end 
    if (vari_or_const == 2) && (err_or_segs == 1) 
        [endpt,seg_end_point,c_2,c_1,c_0] = ... 
                   constantQuadApprox(x_pts,vecFunc,consegs); 
    end 
    if ((vari_or_const == 2) && (err_or_segs == 2)) || (vari_or_const == 4) 
        [endpt,seg_end_point,c_2,c_1,c_0] = ... 
                   constQuadAppxWErr(x_pts,func,epsilon); 
    end 
 
    fprintf('\n********************************************************\n') 
    fprintf('\n\nBack from all the Segmentation\n\n') 
    fprintf('\n********************************************************\n') 
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Compute and plot function, approximate function and error           % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    for i = 1:length(seg_end_point)-1; 
         
        % looking at each segment find the approximate and actual points    
        XP    = x_pts(seg_end_point(i):seg_end_point(i+1)); 
        c     = [c_2(i),c_1(i),c_0(i)]; 
        FNC   = vecFunc(XP); 
        FP    = polyval(c,XP); 
        Error = FP - FNC; 
 
        MaxError(i) = max(abs(Error)); 
           if (mod(i,100)==0)  % Only used when trying to limit graphing 
            if (mod(i,2) == 0)  % Plot every other segment a different color 
                figure(mod(vari_or_const,2)+1)      %% Blue 
                plot(XP,FP) 
                figure(mod(vari_or_const,2)+3)      %% Blue 
                plot(XP,Error) 
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            else 
                figure(mod(vari_or_const,2)+1) 
                plot(XP,FP,'r','LineWidth',2)       %% Red 
                figure(mod(vari_or_const,2)+3) 
                plot(XP,Error,'r','LineWidth',2)    %% Red 
            end %if (mod(i,2) == 0) 
            figure(mod(vari_or_const,2)+1) 
            hold on 
            xlabel('x','FontSize',10) 
            ylabel('f(x)','FontSize',10) 
            if (mod(vari_or_const,2) == 1) 
                title([ 'NON-UNIFORM f(x)=',f,... 
                        ' segmentation. No. of ',... 
                        'segments = ',... 
                        num2str(length(seg_end_point)-1),'.'],... 
                        'FontSize',10) 
            elseif (mod(vari_or_const,2) == 0) 
                title([ 'UNIFORM f(x)=',f,... 
                        'segmentation. No. of segments = ',... 
                        num2str(length(seg_end_point)-1),'.'],... 
                        'FontSize',10) 
            end 
            figure(mod(vari_or_const,2)+3) 
            hold on 
            xlabel('x','FontSize',14) 
            errPwr2 = log2(max(MaxError)); 
            ylabel(['Max Error = ',num2Str(max(MaxError)),' = 2\^',... 
                    num2str(errPwr2),'.'],'FontSize',10) 
            if (mod(vari_or_const,2) == 1) 
                title([ 'Error for NON-UNIFORM f(x)=',f,... 
                        ' segmentation. No. of segs = ',... 
                        num2str(length(seg_end_point)-1),'.'],... 
                        'FontSize',10) 
            elseif (mod(vari_or_const,2) == 0) 
                title([ 'Error for UNIFORM f(x)=',f,... 
                        ' segmentation. No. of segs = ',... 
                        num2str(length(seg_end_point)-1),'.'],... 
                        'FontSize',10) 
            end 
         end % if (mod(i,100)==0)  Graphing STOP/START 
    end %for i = 1:length(seg_endpt) 
    figure(mod(vari_or_const,2)+1) 
    plot(x_pts,y_actual)   % Plot func on same fig as piecewise approx 
    stem(x_pts(seg_end_point),y_actual(seg_end_point)) 
    hold off 
 
    %%%%%%%%%%%%    Decimal to Binary Conversion Algorithm     %%%%%%%%%%%% 
     
    %======================================% 
    % Print whether Uniform or Non-uniform % 
    %======================================% 
    if (mod(vari_or_const,2) == 1) 
        fprintf('\n NON-UNIFORM Segmentation') 
    elseif (mod(vari_or_const,2) == 0) 
        fprintf('\n UNIFORM Segmentation') 
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    end 
 
%     %======================================% 
%     % Convert to Twos Complement (32.32)   % 
%     %        and save in a file.           % 
%     %======================================% 
    fractLen = 32;                       % 32 bits to represent the fraction 
    intLen  = 64-fractLen;               % 32 bits to represent the integer 
 
    %======================================% 
    % Convert to Twos Complement (16.16)   % 
    %        and save in a file.           % 
    %======================================% 
%     fractLen = 16;                       % 16 bits to represent the fraction 
%     intLen  = 32 - fractLen;             % 16 bits to represent the integer 
     
     
    %======================================% 
    % BINARY FILE                          % 
    %======================================% 
%     % Create text file of Binary values to initialize memory 
%     fid    = fopen('memBIN.mem','w'); 
%     fprintf(fid,'%d', length(seg_end_point)-1);        % Number of Segments 
%  
%     % Convert the values to binary and save in the file 
%     for i = 1:length(seg_end_point)-1 
%         xbin(i,:)   = twosComp(x_pts(seg_end_point(i+1)),intLen, fractLen); 
%         segmnt(i)   = x_pts(seg_end_point(i+1));    % Used in next program 
%         c_2bin(i,:) = twosComp(c_2(i),intLen, fractLen); 
%         c_1bin(i,:) = twosComp(c_1(i),intLen, fractLen); 
%         c_0bin(i,:) = twosComp(c_0(i),intLen, fractLen); 
%         memBin      = [     xbin(i,:),' ',c_2bin(i,:),' ',... 
%                           c_1bin(i,:),' ',c_0bin(i,:)]; 
%         fprintf (fid,'\n%s',memBin); 
% % %  
% % %         fprintf (fid,'\n', xbin(i,:),' ',c_2bin(i,:),... 
% % %                      ' ',c_1bin(i,:),' ',c_0bin(i,:)); 
%     end %for i = 1:length(seg_end_point) 
%  
%     fclose  (fid); 
     
    %======================================% 
    % HEXADEDICMAL FILE                    % 
    %======================================% 
    % Create text file of Binary values to initialize memory 
    fid    = fopen('memHEX0x.mem','w'); 
    Num_of_Segments = length(seg_end_point)-1; 
    fprintf(fid,'%6d', Num_of_Segments);         % Number of Segments 
 
    % for uniform segmentation, store a step size 
    if (vari_or_const == 2) || (vari_or_const == 4) 
        step_len = Num_of_Segments/(intv(2) - intv(1));  %  
        fprintf(fid,'\n0x%s', twosComp(step_len,intLen, fractLen)); 
    end 
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    % Convert the values to binary and save in the file 
    for i = 1:length(seg_end_point)-1 
        xbin(i,:)   = twosComp(x_pts(seg_end_point(i+1)),intLen, fractLen); 
        segmnt(i)   = x_pts(seg_end_point(i+1));    % Used in next program 
        c_2bin(i,:) = twosComp(c_2(i),intLen, fractLen); 
        c_1bin(i,:) = twosComp(c_1(i),intLen, fractLen); 
        c_0bin(i,:) = twosComp(c_0(i),intLen, fractLen); 
        memBin      = [['0x',xbin(i,:)],' ',... 
                       ['0x',c_2bin(i,:)],' ',... 
                       ['0x',c_1bin(i,:)],' ',... 
                       ['0x',c_0bin(i,:)]        ]; 
        fprintf (fid,'\n%s',memBin); 
         
% %         fprintf (fid,'\n',xbin(i,:),' ',c_2bin(i,:),... 
% %                      ' ',c_1bin(i,:),' ',c_0bin(i,:)); 
    end %for i = 1:length(seg_end_point) 
 
    fclose  (fid); 
 
    %======================================% 
    % DECIMAL FILE                         % 
    %======================================% 
    % Create text file of Decimal Values to initialize memory 
    fid    = fopen('memDEC.mem','w'); 
    fprintf(fid,'%6d', Num_of_Segments);       % Number of Segments 
    % for uniform segmentation, store a step size 
    if (vari_or_const == 2) || (vari_or_const == 4) 
        step_len = Num_of_Segments/(intv(2) - intv(1));  %  
        fprintf(fid,'\n%26.18f', step_len);    % Step size in Decimal 
    end 
    memDEC = [segmnt(1:end); c_2; c_1; c_0] 
    maxCoef = max(memDEC); 
    minCoef = min(memDEC); 
    fprintf(fid,'\n%26.18f %26.18f %26.18f %26.18f',memDEC); 
    fclose (fid); 
    %End text file creation 
 
    fprintf('\n') 
    fprintf('\n********************************************************\n') 
    if vari_or_const ~= 3 
        repeat = 0; 
    end 
    if vari_or_const == 3 
        vari_or_const = 4; 
    end 
% % %     profile viewer 
% %     pr = profile('info'); 
% %     profsave(pr,'profile_results') 
end  % End while repeat == 1 
% % % maxCoef = max(maxCoef)        % for debugging to find number range 
% % % minCoef = min(minCoef) 
% End file: QuadAppxRemz.m 
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A.2.1 Remez Algorithm With Chebyshev Initial Points 

 
FILE: chebyRemz.m 

function [poly_coeff, oscil, snd_Err] = chebyRemz(fun,interval,order) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                         % 
% chebyRemz.m                                                             % 
%                                                                         % 
%   Get chebyshev polynomial on the first iteration.  Repeat for Remez    % 
%   application;  User specifies the fuction to approxiamte.              % 
%   This programs turns the function provided into an inline function.    % 
%                                                                         % 
%   INPUT:                                                                % 
%                  f: function entered by user (want to approximate this) % 
%                     However this function cannot be a constant. f must  % 
%                     be only one variable. Must use the variable 'x'.    % 
%              order: order of approximation, e.g. 2nd order polynomial   % 
%           interval: range on which to get the coefficients will be      % 
%                     approximated on the users function.                 % 
%   OUTPUT:                                                               % 
%            errRemz: error points for the range given                    % 
%         poly_coeff: These are the coefficients of the polynomial that   % 
%                     approximates the function.                          % 
%              oscil: Oscillations on interval, for second order poly, we % 
%                     want only 2 oscillations. In this case oscillations % 
%                     are the zeroes of the first derivative.             % 
%                                                                         % 
%        Author:    Njuguna Macaria                                       % 
%       Created:    20 February 2007     Last Modified: 26 MARCH 2007     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%=====================================% 
a       = interval(1); 
b       = interval(2); 
N       = 500;                      % Number of elements per segment 
x_pts   = linspace(a,b,N);          % x axis sample points 
y_act   = fun(x_pts);               % Evaluate actual function 
eps     = (-1).^[0:order+1];        % Epsilon for coefficients calculation 
p_track = [];                       % For tracking result with error 
%======================================% 
 
%======================================% 
% Estimate with Polyfit and get data   % 
%======================================% 
% % % % pp       = polyfit(x_pts,y_act,order);% get polyfit coefficients 
% % % % y_pfit   = polyval(pp,x_pts);        % evaluate with polyfit 
coefficients 
% % % % errPfit  = y_pfit - y_act;           % get polyfit error values to 
compare 
 
%======================================% 
% Repeat Powers of the polynomial in   % 
% in (order +2) rows and get the       % 
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% initial x points                     % 
%======================================% 
set = ones(order+2,1)*([0:order+1]); 
xi  = (a+b)/2 + (b-a)/2*cos((set*pi)/(order+1));    
 
% Entering conditions for the loop. First loop is the chebyshev polynomial 
j         = 1; 
max_loops = 10;                     % Max loops for Remez function 
% % % % % ratio_error = 2; 
%=========================================================================% 
% Remez loop, however first set of coefficients are chebyshev coefficients% 
% Exit on these conditions:  1) Convergence  2) Greater than 9 iterations % 
%                            3) If we have an exact quadratic to approx.. % 
%=========================================================================% 
%% while (ratio_error > 1.00000001 || ratio_error < 0.9999999) && j<max_loops 
while j<max_loops 
    % Extract set of initial points for evaluation (we'll use 4th column) 
    % Next, evaluate the points on the actual function 
    N_p = [xi(1,1); xi(1,2); xi(1,3); xi(1,4)]; 
    F   = fun(N_p); 
 
    % Raise x0, x1, x2, x3, to the respective powers 
    A      = (xi').^(set); 
    A(:,4) = eps'; 
     
    %======================================% 
    % Find Polynomial Coefficients         % 
    %======================================% 
    p       = A\F;                  % 1st time = chebyshev coefficients 
    p_track = [p_track,p];          % Records error 
     
    %======================================% 
    % Remove err term; flip coefficients   % 
    %======================================% 
    pflip       = fliplr(p(1:end-1)'); 
    poly_coeff  = pflip; 
 
    %======================================% 
    % Calculate Plot Values                % 
    %======================================% 
    y_apprx     = polyval(pflip,x_pts); % evaluate with poly coefficients 
     
    %======================================% 
    % Calculate the Errors, break loop if  % 
    % 1. function is already a Quadratic   % 
    % 2. If convergence has been reached   % 
    %======================================% 
    errRemz = y_apprx - y_act; 
    max_Err = max (errRemz(2:end-1));   % Max error (exclude ends) 
    min_Err = min (errRemz(2:end-1));   % Min error (exclude ends) 
    if abs(max_Err)>abs(min_Err)        % Set the return value of error 
        snd_Err = abs(max_Err); 
    else 
        snd_Err = abs(min_Err); 
    end 
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    % (3) Exit loop if function == quadratic (very very small error) 
    if abs(max_Err) < 2^-40 && abs(min_Err) < 2^-40 
        oscil = 0; 
% % % % %         plot_cheby(x_pts,y_apprx,y_act,y_pfit,errRemz,errPfit); 
        break;                          % if exact polynomial is found!!! 
    end 
     
    % (1) Exit loop on convergence (previous error equal to present) 
    if j>4 
        comp1=p_track(4,j); 
        comp2=p_track(4,j-1); 
        if comp1 == comp2 
% %         plot_cheby(x_pts,y_apprx,y_act,y_pfit,errRemz,errPfit); 
            break; 
        end % if comp1 == comp2 
    end  % if j>1 
     
    %======================================% 
    % Finding zeroes (Max & Min of error)  % 
    %======================================% 
    err_der  = diff(errRemz);           % Find difference between adjacent 
    err_sign = sign(err_der);           % points and determine the signs. 
    err_sign = diff(err_sign);          % Find difference between signs 
    errZer1  = find(err_sign == -2);    % Yields either 2 or -2 where the 
    errZer2  = find(err_sign ==  2);    % original function changed sign 
    errZeros = [errZer1,errZer2];       % Matrix of where sign changed 
 
    %======================================% 
    % Exit Remez if too many Oscillations  % 
    % Provide Chebyshev Coefficients.      % 
    %======================================% 
    oscil = length (errZeros); 
    if oscil>order 
        fprintf('. ') 
% %         warning('Too many oscillations; Chebyshev Coefficients provided.') 
% %         break; 
    end 
 
    %======================================% 
    % Use max errors and replace x values  % 
    %======================================% 
    new_x2  = find(errRemz == max_Err); % Index of max error point 
    new_x3  = find(errRemz == min_Err); % Index of min error point 
    % Make sure to replace into the correct order on the range 
    new_x2  = new_x2(1);                % Incase there are multiiple 
    new_x3  = new_x3(1);                % pick the first element 
    if new_x2 > new_x3 
        xi(:,2) = a+new_x2/N*(b-a); 
        xi(:,3) = a+new_x3/N*(b-a); 
    elseif new_x2 < new_x3 
        xi(:,2) = a+new_x3/N*(b-a); 
        xi(:,3) = a+new_x2/N*(b-a); 
    end % end if new_x2 > new_x3 statement 
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% % % % % % %     ratio_error = abs(max_Err)/abs(min_Err); 
% % % % % % %     ratio_err_track = [ratio_err_track,ratio_error]; 
 
    %======================================% 
    % Plot actual vs the approx functions  % 
    %======================================% 
% %     if mod(j,3)==1 || j==max_loops 
% %         plot_cheby(x_pts,y_apprx,y_act,y_pfit,errRemz,errPfit); 
% %         figure 
% %         plot(x_pts,errFuncP) 
% %     end % end if mod(j,3)==1 || j==max_loops statement 
% % % %     trackj = [trackj, j]; 
    j=j+1; 
end %while loop 
 
 
% % % format long; 
% % % ratio_err_track 
% % % p_track 
% % % trackj 
% % % format short; 
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A.2.1 Variable Length Approximation Speed-Up Algorithms 

 

The following files are the programs used to speed up the segmentation.  6 are 

presented here.  The first file is the file that is used for segmentation.  The others are 

available for the purpose of comparison.  Only the first file is complete, the other files 

only show the code that is different from the first one i.e. the middle of the file that 

searches out the width for segmentation.   

 

a. Hybrid of 3 estimates, average and thirds 
FILE: varQuadApproxHyb3AvgThird.m 

function [endpt,i,p,data_] = ... 
           varQuadApproxHyb3AvgThird(x_pts,f3der,est_max_len,fct,epsilon,indx) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                         % 
% varQuadApproxHyb3AvgThird.m                                             % 
%                                                                         % 
% This function creates a 2nd Order polynomial approximation of a given   % 
% function using the Remez algorithm. It continues to calculate Remez     % 
% approximations until epsilon is exceeded.                               % 
%                                                                         % 
%   Remez approximations (with first approximation being a chebychev      % 
%   polynomial approximation).                                            % 
%                                                                         % 
%   To reduce the loop time, we first approximate the length of the       % 
%   proposed segment.  We take 3 estimates, at the beginning, end and     % 
%   middle.  Take the average of these 3.  Then evaluate all the points   % 
%   on the proposed length and get set of estimated lengths.              % 
%   Take the average of all these estimates.  This is the proposed length % 
%   to be used.                                                           % 
%                                                                         % 
%   INPUT:                                                                % 
%                fct: function entered by user (want to approximate this) % 
%                     However this function cannot be a constant. f must  % 
%                     be only one variable. Must use the variable 'x'.    % 
%              x_pts: All the x-axis points on which to evaluate the      % 
%                     function.                                           % 
%               indx: index at which to start the interval of x values    % 
%            epsilon: maximum error that the user wants to limit the      % 
%                     approximated function.                              % 
%   OUTPUT:                                                               % 
%              endpt: end point of the segment                            % 
%                  i: Index at which we stopped the function approximated % 
%                  p: coefficient for polynomial approximation            % 
%                       p(1) is the x^2 coeff, p(2) is the x coeff and    % 
%                       p(3) is the constant term in the 2nd order poly   % 
%                                                                         % 
% Modified by Njuguna Macaria                                             % 
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% Modified:      FEB  2, 2007               Last Modified: APR 1, 2007   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
syms x 
order          = 2;                     % Set the order of the polynomial 
errStop        = 0;                     % To to see if we exceeded epsilon 
loopt          = 1;                     % track times Remez is called 
data_          = [];                    % Final loop count accumulated 
x_ptsRange     = x_pts(end)-x_pts(1);   % Basically (b-a) 
start_interval = x_pts(indx);           % Start of this segment interval 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%       ESITMATION      %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%     Using Average after 3 Est    %%%%%%%%%%%%%%%%%%%%%%%%% 
 
abs_f3der = abs(f3der(start_interval)); 
if abs_f3der == 0 
    len = round(.086*length(x_pts));  % Close, but ends up being increased 
else 
    x_range1     = 4*(epsilon*3/abs_f3der)^(1/3); 
    len1         = round(x_range1/(x_ptsRange)*length(x_pts)); 
    if len1+indx > length(x_pts) 
        len  = length(x_pts) - indx; 
    else 
        abs_f3der= abs(f3der(x_pts(indx+len1))); 
        if abs_f3der == 0 
            len = round(.086*length(x_pts)); 
        else 
            x_range2 = 4*(epsilon*3/abs_f3der)^(1/3); 
            len2     = round(x_range2/(x_ptsRange)*length(x_pts)); 
            len_mid  = round((len1+len2)/4); 
            abs_f3der= abs(f3der(x_pts(indx+len_mid))); 
            if abs_f3der == 0 
                len = round(.086*length(x_pts)); 
            else 
                x_range3 = 4*(epsilon*3/abs_f3der)^(1/3); 
                len3     = round(x_range3/(x_ptsRange)*length(x_pts)); 
                len      = round((len1+len2+len3)/3); 
            end 
        end 
        if len+indx > length(x_pts) 
            len = length(x_pts) - indx; 
        end 
        Der3Intr = f3der(x_pts(indx:indx+len));     % Get third derivatives 
        AV3DER   = mean(Der3Intr);                  % Average them all 
        x_range  = 4*(epsilon*3/abs(AV3DER))^(1/3); % Get new X_range value 
        len      = round(x_range/(x_ptsRange)*length(x_pts));  % Best len 
        if len+indx > length(x_pts) 
            len  = length(x_pts) - indx; 
        elseif len > est_max_len*10     % When 3rd Derivative is small 
            len  = est_max_len; 
        end 
    end 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%       LOCATE        %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
interval       = [start_interval,x_pts(len+indx)]; 
[p,oscil,errP] = chebyRemz(fct,interval,order); 
max_Perr       = errP; 
 
LOOK           = max_Perr/epsilon; 
 
if abs_f3der == 0  || LOOK < 0.9 || LOOK > 1.002 
    %=====================================% 
    % Find a good place to start indexing % 
    %=====================================% 
    if abs_f3der == 0 
        while (max_Perr > epsilon) && len > 2 
            len            = ceil (len/3); 
            if len+indx > length(x_pts) 
                len  = length(x_pts) - indx; 
                break; 
            end 
            interval       = [start_interval,x_pts(indx+len)]; 
            [p,oscil,errP] = chebyRemz(fct,interval,order); 
            max_Perr       = errP; 
            loopt          = loopt +1; 
        end % while max_Perr > epsilon 
        incrementLen = len; 
    else 
        incrementLen = ceil(len*.05); 
    end   % if abs_f3der == 0 
 
    while incrementLen > 2 
        incrementLen   = ceil(incrementLen/3); 
        while (max_Perr < epsilon) && len > 2 
            len            = len + incrementLen; 
            if len+indx > length(x_pts) 
                len  = length(x_pts) - indx; 
                break; 
            end 
            interval       = [start_interval,x_pts(indx+len)]; 
            [p,oscil,errP] = chebyRemz(fct,interval,order); 
            max_Perr       = errP; 
            loopt          = loopt +1; 
        end % while max_Perr > epsilon 
 
        incrementLen   = ceil(incrementLen/3); 
 
        while (max_Perr > epsilon) && len > 2 
            len            = len - incrementLen; 
            interval       = [start_interval,x_pts(indx+len)]; 
            [p,oscil,errP] = chebyRemz(fct,interval,order); 
            max_Perr       = errP; 
            loopt          = loopt +1; 
            if incrementLen < 2 
                break; 
            end 
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        end % max_Perr > epsilon 
    end % end while incrementLen > 2 
end % if 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%       PINPOINT        %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%=====================================% 
% Step from indx + len                % 
%=====================================% 
if max_Perr > epsilon               % Since we exceeded, go backwards 
    i       = indx+len;             % Jump to the estimated length 
    errStop = 2*epsilon;            % Increase to prevent premature stop 
    while i < length(x_pts) 
        if errStop < epsilon 
            i     = i+1;            % This was the point evaluated before 
            endpt = x_pts(i);       % the decrement at the end of this  
                                    % while loop.  Restore index i and all 
                                    % associated data. 
            fid   = fopen('CompareLoop.txt','a'); 
            data_ = [data_ loopt]; 
 
            Der3Intr = f3der(x_pts(indx:indx+len)); 
            AV3DER   = mean(Der3Intr); 
 
            fprintf(fid,'\n%4d   %4d     len: %5d    i: %5d   ',... 
                        'avg:%10.5f  LOOK: %8.6f  MORE',... 
                        i,loopt, len, i-indx, AV3DER, LOOK); 
            fclose (fid); 
            return 
        end 
        loopt          = loopt + 1; 
        interval       = [start_interval, x_pts(i)]; 
        [p,oscil,errP] = chebyRemz(fct,interval,order); 
        errStop        = errP; 
        i              = i -1; 
    end 
else 
    for i=indx+len:length(x_pts)    % Since we were short, go forward 
        % First time thru, skip this if statement 
        % If exceeded the max error, then go back to the previous endpoint 
        if errStop > epsilon 
            i              = i-2;   % Get back to within Error 
            endpt          = x_pts(i); 
            interval       = [start_interval, x_pts(i)]; 
            [p,oscil,errP] = chebyRemz(fct,interval,order); 
            fid            = fopen('CompareLoop.txt','a'); 
            data_          = [data_ loopt]; 
 
            Der3Intr = f3der(x_pts(indx:indx+len)); 
            AV3DER   = mean(Der3Intr); 
 
            fprintf(fid,'\n%4d   %4d     len: %5d    i: %5d   ',... 
                        'avg:%10.5f  LOOK: %8.6f  LESS',... 
                        i,loopt, len, i-indx, AV3DER, LOOK); 
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            fclose (fid); 
            return 
        end % if error > max 
        loopt          = loopt + 1; 
        interval       = [start_interval, x_pts(i)]; 
        [p,oscil,errP] = chebyRemz(fct,interval,order); 
        errStop        = errP*1.05;         % reduces the iterations 
    end 
end % max_Perr > epsilon...... % for i=indx+1:length(fct) 
 
fid   = fopen('CompareLoop.txt','a'); 
data_ = [data_ loopt]; 
fprintf(fid,'\n%4d   %4d',i, loopt); 
fclose (fid); 
endpt = x_pts(i); 
% END OF FILE: varQuadApproxHyb3AvgThird.m 

 



 108

b. Binary Search 

 
FILE: varQuadApproxBinSearch.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%       BIN SEARCH      %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
while (max_Perr > epsilon) && len > 2 
    len            = round (len/2); 
    interval       = [start_interval,x_pts(indx+len)]; 
    [p,oscil,errP] = chebyRemz(fct,interval,order); 
    max_Perr       = errP; 
    loopt          = loopt +1; 
end % while max_Perr > epsilon 
 
incrementLen = len;  
 
while incrementLen > 2 
    incrementLen   = round(incrementLen/2); 
    while (max_Perr < epsilon) && len > 1 
        len            = len + incrementLen; 
        if len+indx > length(x_pts) 
            len  = length(x_pts) - indx; 
            break; 
        end 
        interval       = [start_interval,x_pts(indx+len)]; 
        [p,oscil,errP] = chebyRemz(fct,interval,order); 
        max_Perr       = errP; 
        loopt          = loopt +1; 
    end % while max_Perr > epsilon 
 
    incrementLen   = round(incrementLen/2); 
    
    while (max_Perr > epsilon) && len > 1 
        len            = len - incrementLen; 
        interval       = [start_interval,x_pts(indx+len)]; 
        [p,oscil,errP] = chebyRemz(fct,interval,order); 
        max_Perr       = errP; 
        loopt          = loopt +1; 
        if incrementLen == 1 
            break; 
        end 
    end % max_Perr > epsilon 
end % end while incrementLen > 2 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%       PINPOINT        %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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c. Thirds 
FILE: varQuadApproxTHIRD.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%       THIRDS      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
while (max_Perr > epsilon) && len > 2 
    len            = round (len/3); 
    if len+indx > length(x_pts) 
        len  = length(x_pts) - indx; 
        break; 
    end 
    interval       = [start_interval,x_pts(indx+len)]; 
    [p,oscil,errP] = chebyRemz(fct,interval,order); 
    max_Perr       = errP; 
    loopt          = loopt +1; 
end % while max_Perr > epsilon 
 
incrementLen = len;  
 
while incrementLen > 2 
    incrementLen   = round(incrementLen/3); 
    while (max_Perr < epsilon) && len > 2 
        len            = len + incrementLen; 
        if len+indx > length(x_pts) 
            len  = length(x_pts) - indx; 
            break; 
        end 
        interval       = [start_interval,x_pts(indx+len)]; 
        [p,oscil,errP] = chebyRemz(fct,interval,order); 
        max_Perr       = errP; 
        loopt          = loopt +1; 
    end % while max_Perr > epsilon 
 
    incrementLen   = round(incrementLen/3); 
    
    while (max_Perr > epsilon) && len > 2 
        len            = len - incrementLen; 
        interval       = [start_interval,x_pts(indx+len)]; 
        [p,oscil,errP] = chebyRemz(fct,interval,order); 
        max_Perr       = errP; 
        loopt          = loopt +1; 
        if incrementLen < 3 
            break; 
        end 
    end % max_Perr > epsilon 
end % end while incrementLen > 2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%       PINPOINT        %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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d. Ratios 
FILE: varQuadApproxRatio.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%       RATIOS      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
len            = length(x_pts)-indx; 
 
max_Perr = 100; 
LOOK     = 0; 
%=====================================% 
% Find a good place to start indexing % 
%=====================================% 
while (max_Perr > epsilon) && len > 2 
    len            = floor(len/3); 
    interval       = [start_interval,x_pts(indx+len)]; 
    [p,oscil,errP] = chebyRemz(fct,interval,order); 
    max_Perr       = errP; 
    loopt          = loopt +1; 
end 
 
while (max_Perr < epsilon) && len > 2 
    len            = ceil (len*1.2); 
    if len+indx > length(x_pts) 
        len  = length(x_pts) - indx; 
        break; 
    end 
    interval       = [start_interval,x_pts(indx+len)]; 
    [p,oscil,errP] = chebyRemz(fct,interval,order); 
    max_Perr       = errP; 
    loopt          = loopt +1; 
end % max_Perr > epsilon 
 
while (max_Perr > epsilon) && len > 2 
    len            = floor(len*.95); 
    interval       = [start_interval,x_pts(indx+len)]; 
    [p,oscil,errP] = chebyRemz(fct,interval,order); 
    max_Perr       = errP; 
    loopt          = loopt +1; 
end % max_Perr > epsilon 
 
while (max_Perr < epsilon) && len > 2 
    len            = ceil (len*1.01); 
    if len+indx > length(x_pts) 
        len  = length(x_pts) - indx; 
        break; 
    end 
    interval       = [start_interval,x_pts(indx+len)]; 
    [p,oscil,errP] = chebyRemz(fct,interval,order); 
    max_Perr       = errP; 
    loopt          = loopt +1; 
end % while max_Perr > epsilon 
 
while (max_Perr > epsilon) && len > 2 
    len            = floor (len*.999); 
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    if len+indx > length(x_pts) 
        len  = length(x_pts) - indx; 
        break; 
    end 
    interval       = [start_interval,x_pts(indx+len)]; 
    [p,oscil,errP] = chebyRemz(fct,interval,order); 
    max_Perr       = errP; 
    loopt          = loopt +1; 
end % while max_Perr > epsilon 
% end % if 
 
interval       = [start_interval,x_pts(len+indx)]; 
[p,oscil,errP] = chebyRemz(fct,interval,order); 
max_Perr       = errP; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%       PINPOINT        %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

 
e. 1 estimate 

FILE: varQuadApprox1.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%       ESITMATION      %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%..     Using 1 Est     %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
abs_f3der = abs(f3der(start_interval)); 
if abs_f3der == 0 
    len = round(.086*length(x_pts));  % Close, but ends up being increased 
else 
    x_range1 = 4*(epsilon*3/abs_f3der)^(1/3); 
    len      = round(x_range1/(x_ptsRange)*length(x_pts)); 
    if len+indx > length(x_pts) 
        len  = length(x_pts) - indx; 
    end 
end 
 
interval       = [start_interval,x_pts(len+indx)]; 
[p,oscil,errP] = chebyRemz(fct,interval,order); 
max_Perr       = errP; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%       PINPOINT        %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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f. 2 estimates 
FILE: varQuadApprox2.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%       ESITMATION      %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%..     Using 2 Est     %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
abs_f3der = abs(f3der(start_interval)); 
if abs_f3der == 0 
    len = round(.086*length(x_pts));  % Close, but ends up being increased 
else 
    x_range1     = 4*(epsilon*3/abs_f3der)^(1/3); 
    len1         = round(x_range1/(x_ptsRange)*length(x_pts)); 
    if len1+indx > length(x_pts) 
        len  = length(x_pts) - indx; 
    else 
        abs_f3der= abs(f3der(x_pts(indx+len1))); 
        if abs_f3der == 0 
            len = est_max_len; 
        else 
            x_range2 = 4*(epsilon*3/abs_f3der)^(1/3); 
            len2     = round(x_range2/(x_ptsRange)*length(x_pts)); 
            len      = round((len1+len2)/2); 
        end 
    end 
    if len+indx > length(x_pts) 
        len  = length(x_pts) - indx; 
    end 
end 
 
interval       = [start_interval,x_pts(len+indx)]; 
[p,oscil,errP] = chebyRemz(fct,interval,order); 
max_Perr       = errP; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%       PINPOINT        %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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g. 3 estimates 

 
FILE: varQuadApprox3.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%       ESITMATION      %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%..     Using 3 Est     %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
abs_f3der = abs(f3der(start_interval)); 
if abs_f3der == 0 
    len = round(.086*length(x_pts));  % Close, but ends up being increased 
else 
    x_range1     = 4*(epsilon*3/abs_f3der)^(1/3); 
    len1         = round(x_range1/(x_ptsRange)*length(x_pts)); 
    if len1+indx > length(x_pts) 
        len  = length(x_pts) - indx; 
    else 
        abs_f3der= abs(f3der(x_pts(indx+len1))); 
        if abs_f3der == 0 
            len = est_max_len; 
        else 
            x_range2 = 4*(epsilon*3/abs_f3der)^(1/3); 
            len2     = round(x_range2/(x_ptsRange)*length(x_pts)); 
            len_mid  = round((len1+len2)/4); 
            abs_f3der= abs(f3der(x_pts(indx+len_mid))); 
            if abs_f3der == 0 
                len = est_max_len; 
            else 
                x_range3 = 4*(epsilon*3/abs_f3der)^(1/3); 
                len3     = round(x_range3/(x_ptsRange)*length(x_pts)); 
                len      = round((len1+len2+len3)/3); 
            end 
        end 
        if len+indx > length(x_pts) 
            len  = length(x_pts) - indx; 
        elseif len > est_max_len*10     % When 3rd Derivative is small 
            len  = est_max_len; 
        end 
    end 
end 
 
 
interval       = [start_interval,x_pts(len+indx)]; 
[p,oscil,errP] = chebyRemz(fct,interval,order); 
max_Perr       = errP; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%       PINPOINT        %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A.2.2 Non-Uniform Quadratic Approximation 

This is the file that keeps track of the segments computed and the associated 

endpoints and coefficients.  The data is sent back to the main function, 

QuadAppxRemz.m.  From we call varQuadApproxHyb3AvgThird.m or any of the other 

varQuadApprox* files depending on which one we want to use. 

 
FILE: multipleQuadApprox.m 

function [endpt,indx,c2,c1,c0] = multipleQuadApprox(xpts,fct,epsilon) 
 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function will produce multiple Quadratic-line approximations of a  % 
% given function to within the bounds of max error provided.              % 
% Created: January, 2007                                                  % 
%                                                                         % 
%                                                                         % 
%   INPUT:                                                                % 
%                fct: function entered by user (want to approximate this) % 
%                     However this function cannot be a constant. f must  % 
%                     be only one variable. Must use the variable 'x'.    % 
%               xpts: All the x-axis points on which to evaluate the      % 
%                     function.                                           % 
%            epsilon: maximum error that the user wants to limit the      % 
%                     approximated function.                              % 
%   OUTPUT:                                                               % 
%              endpt: end point of the segment                            % 
%               indx: Array of all the index endpoints                    % 
%                 c2: Array of the x^2 polynomial coefficients            % 
%                 c1: Array of the x polynomial coefficients              % 
%                 c0: Array of the constant terms in the 2nd order poly   % 
%                                                                         % 
% Modified: July 2, 2007                                                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
syms x 
format compact 
i      = 1;  
seg_no = 1;  
endpt  = [];  
c2     = []; 
c1     = [];  
c0     = []; 
 
%========================================% 
% Find Max length Estimate. Will be      % 
% used if third derivative = 0, or if    % 
% it's really small (NOT YET IMPLEMETED) % 
%========================================% 
fct_vec      = inline(vectorize(fct)); 
abs_f3der    = abs(diff(diff(diff(fct)))); 
abs_f3der_vec= inline(vectorize(abs_f3der)); 
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f3der_pts    = abs(abs_f3der_vec(xpts)); 
abs_f3der_max= max(f3der_pts);               % Absolute Max 3rd derivative 
x_ptsRange   = xpts(end)-xpts(1); 
 
xpts_min_seg = 4*(epsilon*3/abs_f3der_max)^(1/3);   % smallest seg width  
min_seg_len  = round(xpts_min_seg/x_ptsRange*length(xpts)); 
xpts_avg_seg = 4*(epsilon*3*x_ptsRange/... 
    quadl(abs_f3der_vec,xpts(1),xpts(end)))^(1/3); 
avg_seg_len  = round(xpts_avg_seg/x_ptsRange*length(xpts)); 
est_max_len  = 2*avg_seg_len - min_seg_len; 
 
% If the fucntion is sqrt(-log(x)), then make est_max_len the max size. 
% est_max_len calculated is not as large as the larger segments and will 
% slow down the program because of small estimates...Therefore: 
if fct == sqrt(-log(x)) 
    est_max_len = length(xpts); 
end 
 
% Sometimes the estimates are short.  To prevent this from affecting the  
% program... est_max_len is increased * 10 
% est_max_len = 10*est_max_len; 
 
%========================================% 
% Get the values for each segment and    % 
% store them in the return vectors       % 
%========================================% 
indx(i)= 1;         % To include the first element, offset length by 1 
while i < length(xpts) 
    [endpt(seg_no),indx(seg_no+1),polyCoeff] = ... 
        varQuadApproxHyb3AvgThird (xpts,abs_f3der_vec,... 
                                            est_max_len,fct_vec,epsilon,i); 
    c2(seg_no) = polyCoeff(1); 
    c1(seg_no) = polyCoeff(2); 
    c0(seg_no) = polyCoeff(3); 
    i          = indx(seg_no+1); 
    seg_no     = seg_no + 1; 
end 
fprintf('\n\n******************End of Segmentation******************\n\n'); 
avg_seg_len   
min_seg_len   
est_max_len   
Seg_lengths = diff(indx) 
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A.2.3 Uniform Quadratic Approximation 
FILE: constantQuadApprox.m 

function [endpt,indx,c2,c1,c0] = constantQuadApprox(x_pts,fct,constsegs) 
%  
% This function produces multiple Quadratic approximations of a 
% given function to within the bounds of the number of segments provided. 
% Coefficients calculated by Remez.   
% 
% Created by Tom Mack for linear approximations, using polyfit 
% Created: June 4, 2006 
% Modified for Quadratic approximations using Remez by Njuguna Macaria 
% Modified: July 11, 2006 
%  
 
syms x 
order   = 2; 
indx(1) = 1; 
 
for i = 1:constsegs 
    indx(i+1) = round((length(x_pts)/constsegs)*i); % each iteration set seg 
size 
    if i==constsegs 
        indx(i+1) = length(x_pts); 
    end 
    endpt(i)       = x_pts(indx(i+1)); 
    interval       = [x_pts(indx(i)),endpt(i)]; 
    [p,oscil,errP] = chebyRemz(fct,interval,order); 
    c2(i) = p(1); 
    c1(i) = p(2); 
    c0(i) = p(3); 
    i     = i+1; 
end 
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A.2.4 Uniform Quadratic Approximation with Constraints 
FILE: constQuadAppxWErr.m 

function [endpt,indx,c2,c1,c0] = constQuadAppxWErr(xpts,fct,epsilon) 
 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function will produce multiple Quadratic-line approximations of a  % 
% constant size of a given function to within the bounds of the max error % 
% provided.  Coefficients & intercept calculated using Chebychev and      % 
% algorithm.                                                              % 
%                                                                         % 
%   INPUT:                                                                % 
%                fct: function entered by user (want to approximate this) % 
%                     However this function cannot be a constant. f must  % 
%                     be only one variable. Must use the variable 'x'.    % 
%              x_pts: All the x-axis points on which to evaluate the      % 
%                     function.                                           % 
%               indx: index at which to start the interval of x values    % 
%            epsilon: maximum error that the user wants to limit the      % 
%                     approximated function.                              % 
%   OUTPUT:                                                               % 
%              endpt: end point of the segment                            % 
%                 c2: Coefficients of x^2 in quadratic polynomial         % 
%                 c1: Coefficients of x in quadratic polynomial           % 
%                 c0: Constant of quadratic polynomial                    % 
%                                                                         % 
% Compute # of seg                                                        % 
% Author:  Njuguna Macaria                              Date: 5 July 2007 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
syms x 
 
%========================================% 
% Find Min length Estimate. Will be      % 
% the limiting length for uniform        % 
% implmentation                          % 
%========================================% 
fct_vec        = inline(vectorize(fct));        % vectorize fct (for eval) 
abs_f3der      = abs(diff(diff(diff(fct))));    % symbolic 3rd derivative 
abs_f3der_vec  = inline(vectorize(abs_f3der));  % vectorize for evaluation 
f3der_pts      = abs(abs_f3der_vec(xpts));      % evaluate to form vector 
abs_f3der_max  = max(f3der_pts);                % abs (Max 3rd derivative) 
x_ptsRange     = xpts(end)-xpts(1);             % Find length of x-domain 
 
xpts_min_seg   = 4*(epsilon*3/abs_f3der_max)^(1/3); % smallest domain len 
est_min_seglen = floor(xpts_min_seg/x_ptsRange*length(xpts)) %in index pts 
 
%========================================% 
% Find where this happens in the domain  % 
%========================================% 
IndxofMax      = find(f3der_pts == abs_f3der_max);% Find min len on domain 
numoftimes     = length(IndxofMax);               % How many are there? 
 
%========================================% 
% Test begin, End and Midddle            % 
%========================================% 
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est_max_len    = length(xpts);                      % dummy variable 
if numoftimes > 1                                   % more than 1 Max point 
    i          = IndxofMax(1);                      % i at begin of est seg 
else 
    i          = IndxofMax;                         % default 
end 
IndMaxtmp  = i;                                     % The new IndexofMax 
 
if i > length(xpts) - est_min_seglen                % Check if truncated 
    lenBegin = est_min_seglen;                      % segement then fix 
    lenMid   = est_min_seglen;                      % both these estimates 
else 
    % % % % % % % % % % % % % % % % % % % % % % % % % % 
    % Begin with the index of the highest 3rd derivative 
    [endpt,indx,p] = varQuadApproxHyb3AvgThird( xpts,... 
                                                abs_f3der_vec, ... 
                                                est_max_len, ... 
                                                fct_vec, ... 
                                                epsilon,... 
                                                i); 
    lenBegin       = indx - i; 
 
    % % % % % % % % % % % % % % % % % % % % % % % % % % 
    % index of the highest 3rd derivative in the middle 
    i              = IndMaxtmp - floor(est_min_seglen/2);% is at end of est seg 
    if i < 1            % Check to make sure not indexing before begin 
        i = 1;          % of interval, if so start at begin of interval 
    end 
    [endpt,indx,p] = varQuadApproxHyb3AvgThird( xpts,... 
                                                abs_f3der_vec, ... 
                                                est_max_len, ... 
                                                fct_vec, ... 
                                                epsilon,... 
                                                i); 
    lenMid         = indx - i; 
 
 
end 
 
% % % % % % % % % % % % % % % % % % % % % % % % % % 
% end with the index of the highest 3rd derivative 
i              = IndMaxtmp - est_min_seglen;        % is at end of est seg 
if i < 1            % Check to make sure not indexing before begin 
    i = 1;          % of interval, if so start at begin of interval 
end 
[endpt,indx,p] = varQuadApproxHyb3AvgThird( xpts,... 
                                            abs_f3der_vec, ... 
                                            est_max_len, ... 
                                            fct_vec, ... 
                                            epsilon,... 
                                            i); 
lenEnd         = indx - i; 
 
 
%========================================% 
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% Find # of required segments on domain  % 
%========================================% 
min_seglen    = min([lenBegin,lenMid,lenEnd,est_min_seglen]); 
numberOfSegs  = ceil(length(xpts)/(min_seglen-1));  % Go large, figure # segs 
 
%========================================% 
% Reuse the function to calculate data   % 
%========================================% 
[endpt,indx,c2,c1,c0] = constantQuadApprox(xpts,fct_vec,numberOfSegs); 
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A.2.5 Fixed-Point Decimal to HEXADECIMAL or BINARY 

 
FILE: twosComp.m 

%function [hexX,decX,binX] = twosComp(x,intLen,mantisaLen) 
function hexX = twosComp(x,intLen,mantisaLen) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% twosComp.m                                                              % 
%                                                                         % 
% This function converts any decimal number to a two's complement binary  % 
% fi object.                                                              % 
%                                                                         % 
%   function [hex, decX, binX] = twosComp(x,intLen,mantisaLen)            % 
%                                                                         % 
%   Input:          x:   The value to be converted                        % 
%              intLen:   User desired length of the integer portion of    % 
%                        the number.  How many bits are in the integer.   % 
%          mantisaLen:   The length of the mantissa.  The number of bits  % 
%                        in the fraction section, the precision.          % 
%  Output:       decX:   Decimal value as fi object.  Integer and         % 
%                        fraction as decimal representation.              % 
%                binX:   Two's Complement of the input x.  With integer   % 
%                        portion represented with "intLen" bits and the   % 
%                        fraction portion represented with "mantisaLen"   % 
%                        bits.                                            % 
%                hexX:   Two's Complement of the input x. Represented     % 
%                        as a Hexadecimal value.                          % 
%                                                                         % 
% This function auto-aligns the decimal point.                            % 
%                                                                         % 
% Created by:  Njuguna Macaria                                            % 
%       Date:  10 May 2007                                                % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
totalLen = intLen+mantisaLen;   % Total bits desired to represent the nbr. 
if totalLen >128 
    warning('Max Precision: 128bits. You have requested > 128 bits'); 
end 
 
% =============================== % 
% fi Object: two's complement     % 
% =============================== % 
decX     = fi(x,1,totalLen,mantisaLen); % Create fi object, display decimal 
binX     = bin(decX);                   % Save and return a binary form 
hexX     = hex(decX); 
deciM    = dec(decX); 
 
% =============================== % 
% Quantizer: two's complement     % 
% =============================== % 
% % % q     = quantizer('fixed', 'nearest', 'saturate',[totalLen mantisaLen]) 
% % % [a,b] = range(q) 
% % % binX  = num2bin(q,x) 
% % % decX  = bin2num(q,b) 
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A.2.6 User Interface and Function Information Files  
FILE: UserInput.m 

function select = UserInput() 
 
format long g 
fprintf('\n\n'                                                        ) 
fprintf('***************************************************************') 
fprintf('\n\n'                                                        ) 
fprintf('\n     QUADRATIC APPROXIMATION OF A FUNCTION USING CHEBYSHEV') 
fprintf('\n                     AND REMEZ AlGORITHM'                  ) 
fprintf('\n'                                                          ) 
fprintf('\n'                                                          ) 
 
disp('***************************************************************') 
disp('Functions to be compared                     Interval'          ) 
disp(' 1.  2^x                                     [0,1]'             ) 
disp(' 2.  1/x                                     [1,2]'             ) 
disp(' 3.  sqrt(x)                                 [1,2]'             ) 
disp(' 4.  1/sqrt(x)                               [1,2]'             ) 
disp(' 5.  log2(x)                                 [1,2]'             ) 
disp(' 6.  log(x)  = ln(x)                         [1,2]'             ) 
disp(' 7.  sin(pi*x)                               [0,1/2]'           ) 
disp(' 8.  cos(pi*x)                               [0,1/2]'           )  
disp(' 9.  tan(pi*x)                               [0,1/4]'           ) 
disp(' 10. sqrt(-log(x))   = sqrt(-ln(x))          [1/512,1/4]'       ) 
disp(' 11. tan(pi*x)^2 + 1                         [0,1/4]'           ) 
disp(' 12. -(x*log2(x) + (1-x)*log2(1-x))          [1/256,1-1/256]'   ) 
disp(' 13. 1/(1+exp(-x))   = 1/(1+e^(-x))          [0,1]'             ) 
disp(' 14. (1/sqrt(2*pi))*exp(-x^2/2)              [0,sqrt(2)]'       ) 
disp(' 15. sin(exp(x))                             [0,2]'             ) 
disp('***************************************************************') 
 
 
% Get FUNCTION to be approximated (user input) 
select = input( 'Input the Function, func[sqrt(-1*log(x))]:  '); 
if isempty(select) 
    select = 10;                         % default 
end 
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FILE: getF.m 
function [func,interval,vari_or_const,err_or_segs,consegs,epsilon,N]=... 
                                                          getF(fnc_choice); 
 
syms x 
interval    = '[1/256, 1/4]';           %% default 
err_or_segs = 0;                        %% default 
consegs     = 200;                      %% default 
epsilon     = 0.0001;                   %% default 
 
switch fnc_choice 
        case 1 
            func     = '2^x'; 
            interval = '[0,1]'; 
        case 2 
            func     = '1./x'; 
            interval = '[1,2]'; 
        case 3 
            func     = 'sqrt(x)'; 
            interval = '[1,2]'; 
        case 4 
            func     = '1/sqrt(x)'; 
            interval = '[1,2]'; 
        case 5 
            func     = 'log2(x)'; 
            interval = '[1,2]'; 
        case 6 
            func     = 'log(x)'; 
            interval = '[1,2]'; 
        case 7 
            func     = 'sin(pi*x)'; 
            interval = '[0,1/2]'; 
        case 8 
            func     = 'cos(pi*x)'; 
            interval = '[0,1/2]'; 
        case 9 
            func     = 'tan(pi*x)'; 
            interval = '[0,1/4]'; 
        case 10 
            func     = 'sqrt(-log(x))'; 
            interval = '[1/512,1/4]'; 
        case 11 
            func     = 'tan(pi*x).^2 + 1'; 
            interval = '[0,1/4]'; 
        case 12 
            func     = '-(x*log2(x) + (1-x)*log2(1-x))'; 
            interval = '[1/256,1-1/256]'; 
        case 13 
            func     = '1/(1+exp(-x))'; 
            interval = '[0,1]'; 
        case 14 
            func     = '(1/sqrt(2*pi))*exp(-x^2/2)'; 
            interval = '[0,sqrt(2)]'; 
        case 15 
            func     = 'sin(exp(x))'; 
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            interval = '[0,2]';         
end %switch fnc_choice 
 
 
% Get CONSTANT OF VARIABLE segmentation (User input) 
vari_or_const = 0; 
while vari_or_const ~= 1 && vari_or_const ~= 2 && vari_or_const ~= 3 
    vari_or_const = input( '(1)Non-uniform (2)Uniform Segmentation [1]:  '); 
    if isempty(vari_or_const) 
        vari_or_const = 1;              %% default Non-uniform 
    end 
end 
 
% If non-uniform segmentation, then enter ERROR parameters 
if vari_or_const ~= 2 
    epsilon = input( 'Input the Desired Error, epsilon[2^-33]:  '); 
    if isempty(epsilon) 
        epsilon     = 2^-33;             %% default 
    end 
end 
 
% If uniform segmentation, find how the user will restrict # of segments 
if vari_or_const == 2 
    err_or_segs = input( 'Constrain by (1)Number of Segments or (2)Error [1]:'); 
    if isempty(err_or_segs) 
        err_or_segs = 1;                %% default 
    end 
    if err_or_segs == 1 
        consegs = input( 'Input the number of Desired Segments[20]:  '); 
        if isempty(consegs) 
            consegs = 20;               %% default 
        end 
    end 
    if err_or_segs == 2 
        epsilon = input( 'Input the given_error; epsilon[2^-16]:  '); 
        if isempty(epsilon) 
            epsilon = 2^-16;            %% default 
        end 
    end 
end 
 
N = input( 'Input the no. of pts the fct is to be evaluated, N[1000000]:  '); 
if isempty(N) 
    N = 1000000;                         %% default 
end 

 
 



 124

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 125

APPENDIX B.  HDL CODE  

B.1 MULTIPLIER CODE 
The VHDL code was adapted from Xilinx’s application note on pipelining a 

multiplier in the Virtex II family of chips[22].  The code is for 32 bit inputs and one 32 

bit product with the decimal point in the middle; 16 bit integer and 16 bit fraction. 

 

1. VHDL 
--------------------------------------------------------------------- 
-- School:         NPS - Naval Postgraduate School, Monterey  
-- Student:        Njuguna Macaria  
-- 
-- Create Date:    14:10:56 07/07/07 
-- Design Name:     
-- Module Name:    mult_32to32 - Behavioral 
-- Project Name:    
-- Target Device:  xc2v6000-4ff1517  (virtex II in SRC-6) 
-- Tool versions:  Xilinx 6.303i and Synplicity 8.1 
-- Simulation:     Modelsim and Synplicity's simulation tool 
-- Description: 
-- 
-- Dependencies:   Modified from  
--  
-- Revision: 
-- Revision 0.01 - File Created 
-- Additional Comments: 
--  
--------------------------------------------------------------------- 
--*********************  COMPONENTS NEEDED  ***********************-- 
--------------------------------------------------------------------- 
                             
--------------------------------------------------------------------- 
                       -- UNSIGNED 16 BIT MULTIPLIER -- 
--------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
Library UNISIM; 
use UNISIM.vcomponents.all; 
 
-- Entity: Description of pins (PORTS) 
entity mult16_32 is 
   port(   au, bu: in std_logic_vector (15 downto 0); 
             clk : in std_logic; 
           produ : out std_logic_vector(31 downto 0)); 
end mult16_32; 
 
architecture mult16_32_beh of mult16_32 is 
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   component FDR 
      port( 
            Q   :   out   STD_ULOGIC; 
            D   :   in    STD_ULOGIC; 
            C   :   in    STD_ULOGIC; 
            R   :   in    STD_ULOGIC); 
   end component;       
 
   component MULT18X18S 
      port (A   : in  STD_LOGIC_VECTOR (17 downto 0); 
            B   : in  STD_LOGIC_VECTOR (17 downto 0); 
            C   : in  STD_ULOGIC ; 
            CE  : in  STD_ULOGIC ; 
            P   : out STD_LOGIC_VECTOR (35 downto 0); 
            R   : in  STD_ULOGIC ); 
   end component; 
 
   signal  a_wire, b_wire: std_logic_vector(15 downto 0); 
   signal          p_wire: std_logic_vector(31 downto 0); 
   signal         discard: std_logic_vector( 3 downto 0); 
    
   attribute RLOC : string; 
 
   attribute RLOC of REG_A0 : label is "X0Y0" ; 
   attribute RLOC of REG_A1 : label is "X0Y0" ; 
   attribute RLOC of REG_A2 : label is "X0Y1" ; 
   attribute RLOC of REG_A3 : label is "X0Y1" ; 
   attribute RLOC of REG_A4 : label is "X0Y2" ; 
   attribute RLOC of REG_A5 : label is "X0Y2" ; 
   attribute RLOC of REG_A6 : label is "X0Y3" ; 
   attribute RLOC of REG_A7 : label is "X0Y3" ; 
   attribute RLOC of REG_A8 : label is "X0Y4" ; 
   attribute RLOC of REG_A9 : label is "X0Y4" ; 
   attribute RLOC of REG_A10: label is "X0Y5" ; 
   attribute RLOC of REG_A11: label is "X0Y5" ; 
   attribute RLOC of REG_A12: label is "X0Y6" ; 
   attribute RLOC of REG_A13: label is "X0Y6" ; 
   attribute RLOC of REG_A14: label is "X0Y7" ; 
   attribute RLOC of REG_A15: label is "X0Y7" ; 
--    attribute RLOC of REG_A16: label is "X-1Y7"; 
--    attribute RLOC of REG_A17: label is "X-1Y7"; 
                                  
   attribute RLOC of REG_B0 : label is "X2Y0" ; 
   attribute RLOC of REG_B1 : label is "X2Y0" ; 
   attribute RLOC of REG_B2 : label is "X2Y1" ; 
   attribute RLOC of REG_B3 : label is "X2Y1" ; 
   attribute RLOC of REG_B4 : label is "X2Y2" ; 
   attribute RLOC of REG_B5 : label is "X2Y2" ; 
   attribute RLOC of REG_B6 : label is "X2Y3" ; 
   attribute RLOC of REG_B7 : label is "X2Y3" ; 
   attribute RLOC of REG_B8 : label is "X2Y4" ; 
   attribute RLOC of REG_B9 : label is "X2Y4" ; 
   attribute RLOC of REG_B10: label is "X2Y5" ; 
   attribute RLOC of REG_B11: label is "X2Y5" ; 
   attribute RLOC of REG_B12: label is "X2Y6" ; 
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   attribute RLOC of REG_B13: label is "X2Y6" ; 
   attribute RLOC of REG_B14: label is "X2Y7" ; 
   attribute RLOC of REG_B15: label is "X2Y7" ; 
--    attribute RLOC of REG_B16: label is "X-1Y6"; 
--    attribute RLOC of REG_B17: label is "X-1Y6"; 
 
   attribute RLOC of REG_P0 : label is "X-2Y0"; 
   attribute RLOC of REG_P1 : label is "X1Y0" ; 
   attribute RLOC of REG_P2 : label is "X1Y0" ; 
   attribute RLOC of REG_P3 : label is "X1Y1" ; 
   attribute RLOC of REG_P4 : label is "X1Y1" ; 
   attribute RLOC of REG_P5 : label is "X3Y0" ; 
   attribute RLOC of REG_P6 : label is "X3Y0" ; 
   attribute RLOC of REG_P7 : label is "X3Y1" ; 
   attribute RLOC of REG_P8 : label is "X-2Y2"; 
   attribute RLOC of REG_P9 : label is "X1Y2" ; 
   attribute RLOC of REG_P10: label is "X1Y2" ; 
   attribute RLOC of REG_P11: label is "X1Y3" ; 
   attribute RLOC of REG_P12: label is "X1Y3" ; 
   attribute RLOC of REG_P13: label is "X3Y2" ; 
   attribute RLOC of REG_P14: label is "X3Y2" ; 
   attribute RLOC of REG_P15: label is "X3Y3" ; 
   attribute RLOC of REG_P16: label is "X-2Y4"; 
   attribute RLOC of REG_P17: label is "X1Y4" ; 
   attribute RLOC of REG_P18: label is "X1Y4" ; 
   attribute RLOC of REG_P19: label is "X1Y5" ; 
   attribute RLOC of REG_P20: label is "X1Y5" ; 
   attribute RLOC of REG_P21: label is "X3Y4" ; 
   attribute RLOC of REG_P22: label is "X3Y4" ; 
   attribute RLOC of REG_P23: label is "X3Y5" ; 
   attribute RLOC of REG_P24: label is "X-2Y6"; 
   attribute RLOC of REG_P25: label is "X1Y6" ; 
   attribute RLOC of REG_P26: label is "X1Y6" ; 
   attribute RLOC of REG_P27: label is "X1Y7" ; 
   attribute RLOC of REG_P28: label is "X1Y7" ; 
   attribute RLOC of REG_P29: label is "X3Y6" ; 
   attribute RLOC of REG_P30: label is "X3Y6" ; 
   attribute RLOC of REG_P31: label is "X3Y7" ; 
--    attribute RLOC of REG_P32: label is "X3Y1" ; 
--    attribute RLOC of REG_P33: label is "X3Y3" ; 
--    attribute RLOC of REG_P34: label is "X3Y5" ; 
--    attribute RLOC of REG_P35: label is "X3Y7" ; 
 
   attribute BEL : string; 
 
   attribute BEL of REG_A0 : label is "FFX" ; 
   attribute BEL of REG_A1 : label is "FFY" ; 
   attribute BEL of REG_A2 : label is "FFX" ; 
   attribute BEL of REG_A3 : label is "FFY" ; 
   attribute BEL of REG_A4 : label is "FFX" ; 
   attribute BEL of REG_A5 : label is "FFY" ; 
   attribute BEL of REG_A6 : label is "FFX" ; 
   attribute BEL of REG_A7 : label is "FFY" ; 
   attribute BEL of REG_A8 : label is "FFX" ; 
   attribute BEL of REG_A9 : label is "FFY" ; 
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   attribute BEL of REG_A10: label is "FFX" ; 
   attribute BEL of REG_A11: label is "FFY" ; 
   attribute BEL of REG_A12: label is "FFX" ; 
   attribute BEL of REG_A13: label is "FFY" ; 
   attribute BEL of REG_A14: label is "FFX" ; 
   attribute BEL of REG_A15: label is "FFY" ; 
--    attribute BEL of REG_A16: label is "FFX" ; 
--    attribute BEL of REG_A17: label is "FFY" ; 
                            
   attribute BEL of REG_B0 : label is "FFX" ; 
   attribute BEL of REG_B1 : label is "FFY" ; 
   attribute BEL of REG_B2 : label is "FFX" ; 
   attribute BEL of REG_B3 : label is "FFY" ; 
   attribute BEL of REG_B4 : label is "FFX" ; 
   attribute BEL of REG_B5 : label is "FFY" ; 
   attribute BEL of REG_B6 : label is "FFX" ; 
   attribute BEL of REG_B7 : label is "FFY" ; 
   attribute BEL of REG_B8 : label is "FFX" ; 
   attribute BEL of REG_B9 : label is "FFY" ; 
   attribute BEL of REG_B10: label is "FFX" ; 
   attribute BEL of REG_B11: label is "FFY" ; 
   attribute BEL of REG_B12: label is "FFX" ; 
   attribute BEL of REG_B13: label is "FFY" ; 
   attribute BEL of REG_B14: label is "FFX" ; 
   attribute BEL of REG_B15: label is "FFY" ; 
--    attribute BEL of REG_B16: label is "FFX" ; 
--    attribute BEL of REG_B17: label is "FFY" ; 
                        
   attribute BEL of REG_P0 : label is "FFY" ; 
   attribute BEL of REG_P1 : label is "FFX" ; 
   attribute BEL of REG_P2 : label is "FFY" ; 
   attribute BEL of REG_P3 : label is "FFX" ; 
   attribute BEL of REG_P4 : label is "FFY" ; 
   attribute BEL of REG_P5 : label is "FFX" ; 
   attribute BEL of REG_P6 : label is "FFY" ; 
   attribute BEL of REG_P7 : label is "FFX" ; 
   attribute BEL of REG_P8 : label is "FFY" ; 
   attribute BEL of REG_P9 : label is "FFX" ; 
   attribute BEL of REG_P10: label is "FFY" ; 
   attribute BEL of REG_P11: label is "FFX" ; 
   attribute BEL of REG_P12: label is "FFY" ; 
   attribute BEL of REG_P13: label is "FFX" ; 
   attribute BEL of REG_P14: label is "FFY" ; 
   attribute BEL of REG_P15: label is "FFX" ; 
   attribute BEL of REG_P16: label is "FFY" ; 
   attribute BEL of REG_P17: label is "FFX" ; 
   attribute BEL of REG_P18: label is "FFY" ; 
   attribute BEL of REG_P19: label is "FFX" ; 
   attribute BEL of REG_P20: label is "FFY" ; 
   attribute BEL of REG_P21: label is "FFX" ; 
   attribute BEL of REG_P22: label is "FFY" ; 
   attribute BEL of REG_P23: label is "FFX" ; 
   attribute BEL of REG_P24: label is "FFY" ; 
   attribute BEL of REG_P25: label is "FFX" ; 
   attribute BEL of REG_P26: label is "FFY" ; 
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   attribute BEL of REG_P27: label is "FFX" ; 
   attribute BEL of REG_P28: label is "FFY" ; 
   attribute BEL of REG_P29: label is "FFX" ; 
   attribute BEL of REG_P30: label is "FFY" ; 
   attribute BEL of REG_P31: label is "FFX" ; 
--    attribute BEL of REG_P32: label is "FFY" ; 
--    attribute BEL of REG_P33: label is "FFY" ; 
--    attribute BEL of REG_P34: label is "FFY" ; 
--    attribute BEL of REG_P35: label is "FFY" ; 
                              
begin 
 
   REG_A0  : FDR port map(Q => a_wire(0)  , C => CLK, D => au(0)  , R 
=> '0'); 
   REG_A1  : FDR port map(Q => a_wire(1)  , C => CLK, D => au(1)  , R 
=> '0'); 
   REG_A2  : FDR port map(Q => a_wire(2)  , C => CLK, D => au(2)  , R 
=> '0'); 
   REG_A3  : FDR port map(Q => a_wire(3)  , C => CLK, D => au(3)  , R 
=> '0'); 
   REG_A4  : FDR port map(Q => a_wire(4)  , C => CLK, D => au(4)  , R 
=> '0'); 
   REG_A5  : FDR port map(Q => a_wire(5)  , C => CLK, D => au(5)  , R 
=> '0'); 
   REG_A6  : FDR port map(Q => a_wire(6)  , C => CLK, D => au(6)  , R 
=> '0'); 
   REG_A7  : FDR port map(Q => a_wire(7)  , C => CLK, D => au(7)  , R 
=> '0'); 
   REG_A8  : FDR port map(Q => a_wire(8)  , C => CLK, D => au(8)  , R 
=> '0'); 
   REG_A9  : FDR port map(Q => a_wire(9)  , C => CLK, D => au(9)  , R 
=> '0'); 
   REG_A10 : FDR port map(Q => a_wire(10) , C => CLK, D => au(10) , R 
=> '0'); 
   REG_A11 : FDR port map(Q => a_wire(11) , C => CLK, D => au(11) , R 
=> '0'); 
   REG_A12 : FDR port map(Q => a_wire(12) , C => CLK, D => au(12) , R 
=> '0'); 
   REG_A13 : FDR port map(Q => a_wire(13) , C => CLK, D => au(13) , R 
=> '0'); 
   REG_A14 : FDR port map(Q => a_wire(14) , C => CLK, D => au(14) , R 
=> '0'); 
   REG_A15 : FDR port map(Q => a_wire(15) , C => CLK, D => au(15) , R 
=> '0'); 
--    REG_A16 : FDR port map(Q => a_wire(16) , C => CLK, D => '0' 
, R => '0'); 
--    REG_A17 : FDR port map(Q => a_wire(17) , C => CLK, D => '0' 
, R => '0'); 
                                                             
   REG_B0  : FDR port map(Q => b_wire(0)  , C => CLK, D => bu(0)  , R 
=> '0'); 
   REG_B1  : FDR port map(Q => b_wire(1)  , C => CLK, D => bu(1)  , R 
=> '0'); 
   REG_B2  : FDR port map(Q => b_wire(2)  , C => CLK, D => bu(2)  , R 
=> '0'); 
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   REG_B3  : FDR port map(Q => b_wire(3)  , C => CLK, D => bu(3)  , R 
=> '0'); 
   REG_B4  : FDR port map(Q => b_wire(4)  , C => CLK, D => bu(4)  , R 
=> '0'); 
   REG_B5  : FDR port map(Q => b_wire(5)  , C => CLK, D => bu(5)  , R 
=> '0'); 
   REG_B6  : FDR port map(Q => b_wire(6)  , C => CLK, D => bu(6)  , R 
=> '0'); 
   REG_B7  : FDR port map(Q => b_wire(7)  , C => CLK, D => bu(7)  , R 
=> '0'); 
   REG_B8  : FDR port map(Q => b_wire(8)  , C => CLK, D => bu(8)  , R 
=> '0'); 
   REG_B9  : FDR port map(Q => b_wire(9)  , C => CLK, D => bu(9)  , R 
=> '0'); 
   REG_B10 : FDR port map(Q => b_wire(10) , C => CLK, D => bu(10) , R 
=> '0'); 
   REG_B11 : FDR port map(Q => b_wire(11) , C => CLK, D => bu(11) , R 
=> '0'); 
   REG_B12 : FDR port map(Q => b_wire(12) , C => CLK, D => bu(12) , R 
=> '0'); 
   REG_B13 : FDR port map(Q => b_wire(13) , C => CLK, D => bu(13) , R 
=> '0'); 
   REG_B14 : FDR port map(Q => b_wire(14) , C => CLK, D => bu(14) , R 
=> '0'); 
   REG_B15 : FDR port map(Q => b_wire(15) , C => CLK, D => bu(15) , R 
=> '0'); 
--    REG_B16 : FDR port map(Q => b_wire(16) , C => CLK, D => '0' 
, R => '0'); 
--    REG_B17 : FDR port map(Q => b_wire(17) , C => CLK, D => '0' 
, R => '0'); 
 
   Mult1 : MULT18X18S  
      port map(P(31 downto 0)  => p_wire, P (35 downto 32) => discard(3 
downto 0), 
               A (17 downto 16) => "00", A(15 downto 0) => a_wire, 
               B (17 downto 16) => "00", B(15 downto 0) => b_wire, 
               C  => CLK,  
               CE => '1',  
               R  => '0'); 
 
   REG_P0  : FDR port map(Q => produ(0)  , C => CLK, D => p_wire(0) , 
R => '0'); 
   REG_P1  : FDR port map(Q => produ(1)  , C => CLK, D => p_wire(1)  , 
R => '0'); 
   REG_P2  : FDR port map(Q => produ(2)  , C => CLK, D => p_wire(2)  , 
R => '0'); 
   REG_P3  : FDR port map(Q => produ(3)  , C => CLK, D => p_wire(3)  , 
R => '0'); 
   REG_P4  : FDR port map(Q => produ(4)  , C => CLK, D => p_wire(4)  , 
R => '0'); 
   REG_P5  : FDR port map(Q => produ(5)  , C => CLK, D => p_wire(5)  , 
R => '0'); 
   REG_P6  : FDR port map(Q => produ(6)  , C => CLK, D => p_wire(6)  , 
R => '0'); 
   REG_P7  : FDR port map(Q => produ(7)  , C => CLK, D => p_wire(7)  , 
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R => '0'); 
   REG_P8  : FDR port map(Q => produ(8)  , C => CLK, D => p_wire(8)  , 
R => '0'); 
   REG_P9  : FDR port map(Q => produ(9)  , C => CLK, D => p_wire(9)  , 
R => '0'); 
   REG_P10 : FDR port map(Q => produ(10) , C => CLK, D => p_wire(10) , 
R => '0'); 
   REG_P11 : FDR port map(Q => produ(11) , C => CLK, D => p_wire(11) , 
R => '0'); 
   REG_P12 : FDR port map(Q => produ(12) , C => CLK, D => p_wire(12) , 
R => '0'); 
   REG_P13 : FDR port map(Q => produ(13) , C => CLK, D => p_wire(13) , 
R => '0'); 
   REG_P14 : FDR port map(Q => produ(14) , C => CLK, D => p_wire(14) , 
R => '0'); 
   REG_P15 : FDR port map(Q => produ(15) , C => CLK, D => p_wire(15) , 
R => '0'); 
   REG_P16 : FDR port map(Q => produ(16) , C => CLK, D => p_wire(16) , 
R => '0'); 
   REG_P17 : FDR port map(Q => produ(17) , C => CLK, D => p_wire(17) , 
R => '0'); 
   REG_P18 : FDR port map(Q => produ(18) , C => CLK, D => p_wire(18) , 
R => '0'); 
   REG_P19 : FDR port map(Q => produ(19) , C => CLK, D => p_wire(19) , 
R => '0'); 
   REG_P20 : FDR port map(Q => produ(20) , C => CLK, D => p_wire(20) , 
R => '0'); 
   REG_P21 : FDR port map(Q => produ(21) , C => CLK, D => p_wire(21) , 
R => '0'); 
   REG_P22 : FDR port map(Q => produ(22) , C => CLK, D => p_wire(22) , 
R => '0'); 
   REG_P23 : FDR port map(Q => produ(23) , C => CLK, D => p_wire(23) , 
R => '0'); 
   REG_P24 : FDR port map(Q => produ(24) , C => CLK, D => p_wire(24) , 
R => '0'); 
   REG_P25 : FDR port map(Q => produ(25) , C => CLK, D => p_wire(25) , 
R => '0'); 
   REG_P26 : FDR port map(Q => produ(26) , C => CLK, D => p_wire(26) , 
R => '0'); 
   REG_P27 : FDR port map(Q => produ(27) , C => CLK, D => p_wire(27) , 
R => '0'); 
   REG_P28 : FDR port map(Q => produ(28) , C => CLK, D => p_wire(28) , 
R => '0'); 
   REG_P29 : FDR port map(Q => produ(29) , C => CLK, D => p_wire(29) , 
R => '0'); 
   REG_P30 : FDR port map(Q => produ(30) , C => CLK, D => p_wire(30) , 
R => '0'); 
   REG_P31 : FDR port map(Q => produ(31) , C => CLK, D => p_wire(31) , 
R => '0'); 
--    REG_P32 : FDR port map(Q => discard( 3)  , C => CLK, D => 
p_wire(32) , R => '0'); 
--    REG_P33 : FDR port map(Q => discard( 2)  , C => CLK, D => 
p_wire(33) , R => '0'); 
--    REG_P34 : FDR port map(Q => discard( 1)  , C => CLK, D => 
p_wire(34) , R => '0'); 
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--    REG_P35 : FDR port map(Q => discard( 0)  , C => CLK, D => 
p_wire(35) , R => '0'); 
 
end mult16_32_beh; 
 
--------------------------------------------------------------------- 
                            --  32 BIT MULTIPLIER  -- 
--------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity mult_32to32 is 
PORT ( 
       a, b :  in std_logic_vector (31 downto 0) ; 
        clk :  in std_logic; 
       prod : out std_logic_vector (31 downto 0)  ); 
END mult_32to32; 
 
architecture structural of mult_32to32 is 
  
    -------------------------------------------------------- 
    --  Declare component: Unsinged 16 bit Multiplier 
    --------------------------------------------------------     
 
    component mult16_32 
    port( au, bu: in std_logic_vector (15 downto 0); 
            clk : in std_logic; 
          produ : out std_logic_vector(31 downto 0)); 
    end component; 
 
    --------------------------------------------------------     
 
 
    -- Intemediate signals for multiplier stage 
    SIGNAL   M00   :    std_logic_vector(31 downto 0); 
    SIGNAL   M01   :    std_logic_vector(31 downto 0); 
    SIGNAL   M10   :    std_logic_vector(31 downto 0); 
    SIGNAL   M02   :    std_logic_vector(31 downto 0); 
    SIGNAL   M11   :    std_logic_vector(31 downto 0); 
    SIGNAL   M20   :    std_logic_vector(31 downto 0); 
     
    -- Intermediate signals for Adding stage 
    SIGNAL   A00   :    std_logic_vector(33 downto 0); 
    SIGNAL   A01   :    std_logic_vector(49 downto 0); 
    SIGNAL   A10   :    std_logic_vector(49 downto 0); 
    SIGNAL   A02   :    std_logic_vector(65 downto 0); 
    SIGNAL   A11   :    std_logic_vector(65 downto 0); 
    SIGNAL   A20   :    std_logic_vector(65 downto 0); 
     
    -- Some definitions for implementing sign extend 
    SIGNAL   ae    :   std_logic_vector(15 downto 0); 
    SIGNAL   be    :   std_logic_vector(15 downto 0); 
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    -- Signal to hold value (synplify pro will not work 
    -- if the width is not matched, Xilinx will) 
    SIGNAL   prdt1 : std_logic_vector(49 downto 0);  
    SIGNAL   prdt2 : std_logic_vector(65 downto 0); 
    SIGNAL   prdt3 : std_logic_vector(65 downto 0);  
    SIGNAL   prdt4 : std_logic_vector(65 downto 0);  
    SIGNAL   prdt5 : std_logic_vector(65 downto 0);  
    SIGNAL   prdt6 : std_logic_vector(65 downto 0);  
  --SIGNAL   b     : std_logic_vector(31 downto 0); 
 
-------------------------------------------------------- 
--  BEGIN the 32 bit Multiplier 
--------------------------------------------------------     
BEGIN 
 
    PROCESS(clk) 
        VARIABLE zer   : std_logic_vector(15 downto 0) := X"0000"; 
-- zeros  
        VARIABLE ones  : std_logic_vector(15 downto 0) := X"FFFF"; 
-- ones 
         
        BEGIN 
            IF clk'event and clk = '1' THEN 
            
                IF (a(15) = '1')THEN  
                    ae(15 downto 0) <= ones; 
                ELSE  
                    ae(15 downto 0) <= zer; 
                END IF; 
 
                IF (b(15) = '1')THEN  
                    be(15 downto 0) <= ones; 
                ELSE     
                    be(15 downto 0) <= zer; 
                END IF; 
             
            END IF; 
    END PROCESS; 
     
        -- Apply the Multiplies 
    U00 :    mult16_32   
            PORT MAP (au   (15 downto 0)=> a   (15 downto  0),  
                      bu   (15 downto 0)=> b   (15 downto  0),  
                      clk               => clk,  
                      produ(31 downto 0)=> M00 (31 downto  0) 
                      );     
    U01 :   mult16_32   
            PORT MAP (au   (15 downto 0)=> a   (15 downto  0),  
                      bu   (15 downto 0)=> b   (31 downto 16),  
                      clk               => clk,  
                      produ(31 downto 0)=> M01 (31 downto  0) 
                      );     
    U10 :   mult16_32   
            PORT MAP (au   (15 downto 0)=> a   (31 downto 16),  
                      bu   (15 downto 0)=> b   (15 downto  0),  
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                      clk               => clk,  
                      produ(31 downto 0)=> M10 (31 downto  0) 
                      );     
    U02 :    mult16_32   
            PORT MAP (au   (15 downto 0)=> a   (15 downto  0),  
                      bu   (15 downto 0)=> be  (15 downto  0),  
                      clk               => clk,  
                      produ(31 downto 0)=> M02 (31 downto  0) 
                      );     
    U11 :   mult16_32  
            PORT MAP (au   (15 downto 0)=> a   (31 downto 16),  
                      bu   (15 downto 0)=> b   (31 downto 16),  
                      clk               => clk,  
                      produ(31 downto 0)=> M11 (31 downto  0) 
                      );     
    U20 :   mult16_32  
            PORT MAP (au   (15 downto 0)=> ae  (15 downto  0),  
                      bu   (15 downto 0)=> b   (15 downto  0),  
                      clk               => clk,  
                      produ(31 downto 0)=> M20 (31 downto  0) 
                      );     
         
        -- shift the values appropriately for addition 
    PROCESS(clk) 
        BEGIN 
            IF clk'event and clk = '1' then 
                    A00(33 downto 32) <= "00"; 
                    A00(31 downto  0) <= M00(31 downto 0); 
 
                    A01(49 downto 48) <= "00"; 
                    A01(47 downto 16) <= M01(31 downto 0); 
                    A01(15 downto  0) <= X"0000"; 
 
                    A10(49 downto 48) <= "00"; 
                    A10(47 downto 16) <= M10(31 downto 0); 
                    A10(15 downto  0) <= X"0000"; 
 
                    A02(65 downto 64) <= "00"; 
                    A02(63 downto 32) <= M02(31 downto 0); 
                    A02(31 downto  0) <= X"00000000"; 
 
                    A11(65 downto 64) <= "00"; 
                    A11(63 downto 32) <= M11(31 downto 0); 
                    A11(31 downto  0) <= X"00000000"; 
 
                    A20(65 downto 64) <= "00"; 
                    A20(63 downto 32) <= M20(31 downto 0); 
                    A20(31 downto  0) <= X"00000000"; 
 
            END if; 
    END PROCESS; 
    
    PROCESS(clk) 
       BEGIN 
          IF clk'event and clk = '1' then 
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             prdt1 <= unsigned(A00) + unsigned(A01)  + unsigned(A10); 
             prdt2 <= unsigned(A02) + unsigned(A11)  + unsigned(A20); 
             prdt3 <= unsigned(prdt2)  + unsigned(prdt1);  
             prod  <= prdt3(47 downto 16); 
            END IF; 
    END PROCESS;                                                     
 
END structural; 

 

2. Verilog 
// $Id: S_MULT_64TO64_SRC6.v,v 1.1 2007/06/25 18:20:29 pvg Exp $ 
 
// 
// Copyright 2007 SRC Computers, Inc.  All Rights Reserved. 
// 
//  Manufactured in the United States of America. 
// 
// SRC Computers, Inc. 
// 4240 N Nevada Avenue 
// Colorado Springs, CO 80907 
// (v) (719) 262-0213 
// (f) (719) 262-0223 
// 
// No permission has been granted to distribute this software 
// without the express permission of SRC Computers, Inc. 
// 
// This program is distributed WITHOUT ANY WARRANTY OF ANY KIND. 
// 
 
 
// DESCRIPTION: This module performs 64 bit signed integer 
multiplication 
// and provides a 64 bit result. 
 
// This module instantiates Xilinx components. 
//-------------------------------------------------------------------// 
// This file was modified by Njuguna Macaria to make a 64 bit by 64 bit 
// Multiplier with a 64 bit result that is shifted to the appropriate 
// decimal point for a 32 bit integer and 32 bit fraction. 
//  
//-------------------------------------------------------------------// 
 
 
//-------------------------------------------------------------------// 
//                      32 BIT MULTIPLIER                            // 
//-------------------------------------------------------------------// 
 
`timescale 1ns/1ns 
 
module mult32_64s (A, B, Q, CLK, CLR); 
    input  [31:0] A; 
    input  [31:0] B; 
    output [63:0] Q; 
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    input  CLK  /*  synthesis syn_noclockbuf=1 syn_maxfan=100000  */  ; 
    input  CLR; 
 
    reg    [63:0] Q; 
 
    reg    [31:0] AR; 
    reg    [31:0] BR; 
 
    wire   [35:0] R0; 
    wire   [35:0] R1; 
    wire   [35:0] R2; 
    wire   [35:0] R3; 
 
    reg    [31:0] R0_R; 
    reg    [31:0] R1_R; 
    reg    [31:0] R2_R; 
    reg    [31:0] R3_R; 
 
    always @ (posedge CLK or posedge CLR) 
    begin 
        if (CLR) begin 
            AR <= 0; 
            BR <= 0; 
        end 
        else begin 
                AR <= A; 
                BR <= B; 
        end 
    end 
 
    MULT18X18S X0 ( 
    .A      ({2'b0, AR[15:0]}), 
    .B      ({2'b0, BR[15:0]}), 
    .C      (CLK), 
    .R      (CLR), 
    .CE     (1'b1), 
    .P      (R0) 
    ); 
 
    MULT18X18S X1 ( 
    .A      ({2'b0, AR[31:16]}), 
    .B      ({2'b0, BR[15:0]}), 
    .C      (CLK), 
    .R      (CLR), 
    .CE     (1'b1), 
    .P      (R1) 
    ); 
 
    MULT18X18S X2 ( 
    .A      ({2'b0, AR[15:0]}), 
    .B      ({2'b0, BR[31:16]}), 
    .C      (CLK), 
    .R      (CLR), 
    .CE     (1'b1), 
    .P      (R2) 
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    ); 
 
    MULT18X18S X3 ( 
    .A      ({2'b0, AR[31:16]}), 
    .B      ({2'b0, BR[31:16]}), 
    .C      (CLK), 
    .R      (CLR), 
    .CE     (1'b1), 
    .P      (R3) 
    ); 
 
    always @ (posedge CLK or posedge CLR) 
    begin 
        if (CLR) begin 
            R0_R <= 0; 
            R1_R <= 0; 
            R2_R <= 0; 
            R3_R <= 0; 
        end 
        else begin 
            R0_R <= R0; 
            R1_R <= R1; 
            R2_R <= R2; 
            R3_R <= R3; 
        end 
    end 
 
    always @ (posedge CLK or posedge CLR) 
    begin 
        if (CLR) begin 
            Q <= 0; 
        end 
        else begin 
            // add and shift 
            Q <= R0_R + {R1_R,16'b0} + {R2_R,16'b0} + {R3_R,32'b0}; 
        end 
    end 
 
endmodule 
 
//-------------------------------------------------------------------// 
//-------------------------------------------------------------------// 
//                      64 BIT MULTIPLIER                            // 
//-------------------------------------------------------------------// 
//-------------------------------------------------------------------// 
 
 
`timescale 1ns/1ns 
 
module mult_64s (A, B, Q, CLK, CLR); 
    input  [63:0] A; 
    input  [63:0] B; 
    output [63:0] Q; 
    input  CLK  /*  synthesis syn_noclockbuf=1 syn_maxfan=100000  */  ; 
    input  CLR; 
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    reg    [127:0] Q_R; 
    reg    [ 63:0] Q; 
 
    reg    [63:0] AR; 
    reg    [63:0] BR; 
 
    wire   [63:0] R0; 
    wire   [63:0] R1; 
    wire   [63:0] R2; 
    wire   [63:0] R3; 
 
    reg    [63:0] R0_R; 
    reg    [63:0] R1_R; 
    reg    [63:0] R2_R; 
    reg    [63:0] R3_R; 
 
    always @ (posedge CLK or posedge CLR) 
    begin 
        if (CLR) begin 
            AR <= 0; 
            BR <= 0; 
        end 
        else begin 
                AR <= A; 
                BR <= B; 
        end 
    end 
 
    mult32_64s X0 ( 
    .A      (AR[31:0]), 
    .B      (BR[31:0]), 
    .Q      (R0), 
    .CLK    (CLK), 
    .CLR    (CLR) 
     ); 
 
    mult32_64s X1 ( 
    .A      (AR[63:32]), 
    .B      (BR[31:0 ]), 
    .Q      (R1), 
    .CLK    (CLK), 
    .CLR    (CLR) 
    ); 
 
    mult32_64s X2 ( 
    .A      (AR[31:0]), 
    .B      (BR[63:32]), 
    .Q      (R2), 
    .CLK    (CLK), 
    .CLR    (CLR) 
    ); 
 
    mult32_64s X3 ( 
    .A      (AR[63:32]), 
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    .B      (BR[63:32]), 
    .Q      (R3), 
    .CLK    (CLK), 
    .CLR    (CLR) 
    ); 
 
 
    always @ (posedge CLK or posedge CLR) 
    begin 
        if (CLR) begin 
            R0_R <= 0; 
            R1_R <= 0; 
            R2_R <= 0; 
            R3_R <= 0; 
        end 
        else begin 
            R0_R <= R0; 
            R1_R <= R1; 
            R2_R <= R2; 
            R3_R <= R3; 
        end 
    end 
 
    always @ (posedge CLK or posedge CLR) 
    begin 
        if (CLR) begin 
            Q <= 0; 
        end 
        else begin 
            // add and shift 
            Q_R <= R0_R + {R1_R,32'b0} + {R2_R,32'b0} + {R3_R,64'b0}; 
            // Only take 64 bits from the middle for a 32.32 number 
            Q   <= Q_R[95:32]; 
        end 
    end 
 
endmodule 
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APPENDIX C. SRC C CODE 

C.1 UNIFORM SEGMENTATION 

1. Floating Point 

a. Main.c 
#include<stdio.h> 
#include<stdlib.h> 
#include<strings.h> 
#include<libmap.h> 
 
// Subroutine initialization in Main 
void  subr_map( double  acoef[], 
                int     ncoef, 
                double  incre, 
                double  offsetV, 
                double  x[], 
                double  y[], 
                double  ys[],     
                int     npts, 
                int64_t *time0, 
                int64_t *time1, 
                int     mapnum); 
 
// MAIN 
main ()  { 
 
    // Initialize Variables 
    FILE    *fp1; 
    double  *array, *x, *y, *ys, incre,val,offsetV; 
    int     i,ir,nc,npts, mapnum,nmap, ncoef,arr_indx,inNum; 
    int64_t tm0, tm1; 
 
    // Start NFG and select map number 
    printf ("\n***START UP THE NFG ***\n"); 
    mapnum = 0; 
    nmap   = 1; 
 
    //      ! allocate map to this problem 
    map_allocate (nmap); 
     
    // User interface 
    printf("------------------------------------------------------\n"); 
    printf("Function   1.  2^x                           :  1\n"); 
    printf("Function   2.  1/x                           :  2\n"); 
    printf("Function   3.  sqrt(x)                       :  3\n"); 
    printf("Function   4.  1/sqrt(x)                     :  4\n"); 
    printf("Function   5.  log2(x)                       :  5\n"); 
    printf("Function   6.  ln(x)                         :  6\n"); 
    printf("Function   7.  sin(pi*x)                     :  7\n"); 
    printf("Function   8.  cos(pi*x)                     :  8\n"); 
    printf("Function   9.  tan(pi*x)                     :  9\n"); 



 142

    printf("Function  10.  sqrt(-ln(x))                  : 10\n"); 
    printf("Function  11.  tan(pi*x)^2 + 1               : 11\n"); 
    printf("Function  12.  -(x*log2(x) + (1-x)*log2(1-x)): 12\n"); 
    printf("Function  13.  1/(1+e^(-x))                  : 13\n"); 
    printf("Function  14.  (1/sqrt(2*pi))*exp(-x^2/2)    : 14\n"); 
    printf("Function  15.  sin(exp(x))                   : 15\n"); 
    printf("------------------------------------------------------\n"); 
     
    printf("\nSelect which function to implement: "); 
    scanf("%i", &inNum); 
    printf("What value did I enter: %i \n ",inNum); 
 
  // Open the Hex data file to read 
    switch (inNum) 
    { 
        case  1: fp1 = fopen("Data/memD1.mem","r"); 
            break; 
        case  2: fp1 = fopen("Data/memD2.mem","r"); 
            break; 
        case  3: fp1 = fopen("Data/memD3.mem","r"); 
            break; 
        case  4: fp1 = fopen("Data/memD4.mem","r"); 
            break; 
        case  5: fp1 = fopen("Data/memD5.mem","r"); 
            break; 
        case  6: fp1 = fopen("Data/memD6.mem","r"); 
            break; 
        case  7: fp1 = fopen("Data/memD7.mem","r"); 
            break; 
        case  8: fp1 = fopen("Data/memD8.mem","r"); 
            break; 
        case  9: fp1 = fopen("Data/memD9.mem","r"); 
            break; 
        case 10: fp1 = fopen("Data/memD10.mem","r"); 
            break; 
        case 11: fp1 = fopen("Data/memD11.mem","r"); 
            break; 
        case 12: fp1 = fopen("Data/memD12.mem","r"); 
            break; 
        case 13: fp1 = fopen("Data/memD13.mem","r"); 
            break; 
        case 14: fp1 = fopen("Data/memD14.mem","r"); 
            break; 
        default: fp1 = fopen("Data/memD15.mem","r"); 
            break; 
    } 
    printf ("fp1 %i\n",fp1); 
 
    // Read in the values from the file 
    fscanf (fp1, "%i", &ncoef); 
    fscanf (fp1, "%lf", &incre); 
    fscanf (fp1, "%lf", &offsetV); 
 
 
    // Depending on number segments 
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    //nc = 50;        // For 16 bit accuracy 
    //nc = 600;       // For 23 bits 
    //nc = 1500;      // For 32 bits 
    nc = 35000;       // For 40 bits 
    array     = (double*)Cache_Aligned_Allocate (4*nc*8); 
    x         = (double*)Cache_Aligned_Allocate (nc*8  ); 
    y         = (double*)Cache_Aligned_Allocate (nc*8  ); 
    ys        = (double*)Cache_Aligned_Allocate (nc*8  ); 
 
    // check if the right thing was read 
    printf ("  ncoef   %i\n",ncoef); 
 
    // read_file 
    for (i=0;i<ncoef;i++)  { 
         fscanf (fp1, "%lf", &val); 
         array[i*4] = val; 
 
         fscanf (fp1, "%lf", &val); 
         array[i*4+1] = val; 
 
         fscanf (fp1, "%lf", &val); 
         array[i*4+2] = val; 
 
         fscanf (fp1, "%lf", &val); 
         array[i*4+3] = val; 
    } // end read_file 
    fclose(fp1); 
     
    npts = 30; 
    // create_samples 
    for (ir=0;ir<npts;ir++) { 
        arr_indx = ir % ncoef; 
        x[ir]    = array[arr_indx*4]; 
        printf ("ir %3i x_values are: %lf\n",ir,x[ir]); 
    } //end create_samples 
 
    printf ("main ncoef %i npts %i\n",ncoef,npts); 
 
    subr_map (array, ncoef, incre, offsetV, x, y, ys, npts, &tm0, &tm1, 
mapnum); 
 
    printf ("\n************ BACK FROM MAP **********\n"); 
    printf ("%lld clocks for NFG\n", tm0); 
    printf ("%lld clocks for SRC Macro\n", tm1); 
 
    for (i=0;i<npts;i++) { 
        printf ("x: %5.16lf  ysubr: %5.16lf  ySRCMacro: %5.16lf\n", 
                 x[i],y[i],ys[i] ); 
    } 
 
    //      ! release the map resources 
    map_free (nmap); 
} 
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b. subr.mc 
#include <libmap.h> 
 
void subr_map ( double  ac[],      
                int     ncoef, 
                double  incre, 
                double  offsetV, 
                double  xc[],      
                double  yc[], 
                double  ys[], 
                int     npts,         
                int64_t *time0, 
                int64_t *time1,   
                int     mapno) 
{ 
 
    /****************************************************************** 
    *  Declarations 
    ******************************************************************/ 
    OBM_BANK_A (ysmap,  double, MAX_OBM_SIZE) 
    OBM_BANK_B (a,      double, MAX_OBM_SIZE) 
    OBM_BANK_C (b,      double, MAX_OBM_SIZE) 
    OBM_BANK_D (c,      double, MAX_OBM_SIZE) 
    OBM_BANK_E (x,      double, MAX_OBM_SIZE) 
    OBM_BANK_F (y,      double, MAX_OBM_SIZE) 
    int         i,j, nbytes, indx; 
    int64_t     tm0,tm1; 
    double      varx,indxtmp; 
 
    /******************************************* 
    *  Read in the cooeff and segment endpoints 
    *******************************************/ 
    nbytes = 4*ncoef * 8;  /* 4 data values (seg,a,b,c), 64bits each */ 
    DMA_CPU (CM2OBM, ysmap, MAP_OBM_stripe(1,"A,B,C,D"), ac, 1, nbytes, 
0); 
    wait_DMA (0); 
 
    /****************************************************************** 
    *  Read in the Number of points 
    ******************************************************************/ 
    nbytes = npts * 8; 
    DMA_CPU (CM2OBM, x, MAP_OBM_stripe(1,"E"), xc, 1, nbytes, 0); 
    wait_DMA (0); 
 
    /****************************************************************** 
    *  Useful in Debug Mode to determine when in Map 
    ******************************************************************/ 
    printf ("\n\n************ NOW IN MAP **********\n"); 
    printf ("MAP subr ncoef %i npts %i\n",ncoef,npts); 
 
    /****************************************************************** 
    *  Read timer and use a constant for UNIFORM Segmentation 
    ******************************************************************/ 
    read_timer (&tm0); 
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    printf("incre: %15.10lf  offset: %15.10lf\n", incre,offsetV); 
    for (i=0;i<npts;i++) 
    { 
 
        varx    = x[i]; 
        indxtmp = incre * varx; 
        indx    = (int)(indxtmp-offsetV);   // For interval [a,b]; when 
a!=0 
        y[i] = a[indx]*varx*varx + varx*b[indx] + c[indx]; 
        // For Debug only 
        printf("indxtmp: %15.10lf indx: %i x: %15.10lf a: %15.10lf ", 
                indxtmp,          indx,    varx,       a[indx]); 
        printf("b: %15.10lf c: %15.10lf fx: %15.10lf\n", 
                b[indx],    c[indx],   y[i]); 
    } 
 
    read_timer (&tm1); 
    *time0 = tm1-tm0; 
 
    read_timer (&tm0); 
    if(ncoef == 4017){ 
        for (i=0; i<npts; i++) 
            ysmap[i] = sqrt(-1*logf(x[i]));         // func 10 
    //  ysmap[i] =  cosf(x[i]*3.14159265358979);    // func  8 
    } 
     read_timer (&tm1); 
 
    *time1 = tm1 - tm0; 
 
    /****************************************************************** 
    *  Send back the results 
    ******************************************************************/ 
    nbytes = npts * 8; 
    DMA_CPU (OBM2CM, y, MAP_OBM_stripe(1,"F"), yc, 1, nbytes, 0); 
    wait_DMA (0); 
 
    nbytes = npts * 8; 
    DMA_CPU (OBM2CM, ysmap, MAP_OBM_stripe(1,"A"), ys, 1, nbytes, 0); 
    wait_DMA (0); 
 
} 
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c. Sample memory file (memD13.mem) 
23 
23.000000000000000000 
0.000000000000000000 
 0.043477043477043474 -0.001358317312431898  0.250022142664697360  0.499999946525873650 
 0.086956086956086961 -0.004069869528842258  0.250257856231724860  0.499994717163829820 
 0.130434130434130440 -0.006766102264296870  0.250726624819223480  0.499974235918064340 
 0.173912173912173920 -0.009436856238895420  0.251423133697143810  0.499928719944731090 
 0.217390217390217380 -0.012072268340317297  0.252339521794440860  0.499848954352031030 
 0.260869260869260880 -0.014662753872468844  0.253465478604624370  0.499726502843754640 
 0.304347304347304340 -0.017199021635054011  0.254788348118468570  0.499553907045252270 
 0.347825347825347850 -0.019672204841648999  0.256293304836314910  0.499324864391809510 
 0.391303391303391310 -0.022073970679148382  0.257963583077645050  0.499034376288904240 
 0.434782434782434780 -0.024396553731653503  0.259780689724019740  0.498678874917245770 
 0.478260478260478240 -0.026632698067803585  0.261724551035193380  0.498256341372862010 
 0.521738521738521750 -0.028775795055367724  0.263773815334481300  0.497766372051921200 
 0.565216565216565270 -0.030819956163696906  0.265906159795873900  0.497210208629803470 
 0.608695608695608680 -0.032759983918098333  0.268098508370670290  0.496590760719450740 
 0.652173652173652200 -0.034591349895399928  0.270327244592241440  0.495912606692870410 
 0.695651695651695600 -0.036310255047355668  0.272568518769947920  0.495181941782176340 
 0.739129739129739120 -0.037913669840421889  0.274798561824121660  0.494406487986867260 
 0.782608782608782640 -0.039399282695242094  0.276993876874879700  0.493595416118664640 
 0.826086826086826040 -0.040765458997357298  0.279131424123494290  0.492759249956049420 
 0.869564869564869560 -0.042011264516131290  0.281188891968362940  0.491909715721972900 
 0.913042913042913070 -0.043136460147426350  0.283144934523894110  0.491059574388106770 
 0.956521956521956480 -0.044141446445428945  0.284979312245647760  0.490222473401396690 
 1.000000000000000000 -0.045027205024233290  0.286673001843708750  0.489412798087615010 

 

2. Fixed Point 

a. Main.c 
#include<stdio.h> 
#include<stdlib.h> 
#include<strings.h> 
#include<libmap.h> 
#include<math.h> 
 
// Subroutine initialization in Main 
void   subr_map (int64_t acoef[],  
                 int     ncoef, 
                 int64_t incre, 
                 int64_t offsetV, 
                 int64_t x[],  
                 int64_t y[],  
                 int     xpts, 
                 int64_t *time0, 
                 int     mapnum); 
 
// MAIN  
main ()  { 
     
    // Initialize Variables 
    FILE    *fp1; 
    int     i,ir,nc,xpts,inNum; 
    int     mapnum,nmap,ncoef; 
    int     arr_indx; 
    int64_t *arraym,*xm,*ym,incre,offsetV; 
    int64_t tm0,tm1,hexval; 
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    char    hexstr[80], *token, *stpstr, strDelimit[]=" \n"; 
     
 
    // Starting NFG 
    printf ("\n***START UP THE NFG ***\n"); 
    mapnum = 0;  
    nmap   = 1; 
 
     
    // User interface 
    printf("------------------------------------------------------\n"); 
    printf("Function   1.  2^x                           :  1\n"); 
    printf("Function   2.  1/x                           :  2\n"); 
    printf("Function   3.  sqrt(x)                       :  3\n"); 
    printf("Function   4.  1/sqrt(x)                     :  4\n"); 
    printf("Function   5.  log2(x)                       :  5\n"); 
    printf("Function   6.  ln(x)                         :  6\n"); 
    printf("Function   7.  sin(pi*x)                     :  7\n"); 
    printf("Function   8.  cos(pi*x)                     :  8\n"); 
    printf("Function   9.  tan(pi*x)                     :  9\n"); 
    printf("Function  10.  sqrt(-ln(x))                  : 10\n"); 
    printf("Function  11.  tan(pi*x)^2 + 1               : 11\n"); 
    printf("Function  12.  -(x*log2(x) + (1-x)*log2(1-x)): 12\n"); 
    printf("Function  13.  1/(1+e^(-x))                  : 13\n"); 
    printf("Function  14.  (1/sqrt(2*pi))*exp(-x^2/2)    : 14\n"); 
    printf("Function  15.  sin(exp(x))                   : 15\n"); 
    printf("------------------------------------------------------\n"); 
     
    //inNum  = 1;           // dummy default value 
    printf("\nSelect which function to implement: "); 
    scanf("%i", &inNum); 
    printf("What value did I enter: %i \n ",inNum); 
 
 
   // Open the Hex data file to read 
    switch (inNum) 
    { 
    case  1: fp1 = fopen("Data/memH1.mem","r"); 
         break; 
    case  2: fp1 = fopen("Data/memH2.mem","r"); 
         break; 
    case  3: fp1 = fopen("Data/memH3.mem","r"); 
         break; 
    case  4: fp1 = fopen("Data/memH4.mem","r"); 
         break; 
    case  5: fp1 = fopen("Data/memH5.mem","r"); 
         break; 
    case  6: fp1 = fopen("Data/memH6.mem","r"); 
         break; 
    case  7: fp1 = fopen("Data/memH7.mem","r"); 
         break; 
    case  8: fp1 = fopen("Data/memH8.mem","r"); 
         break; 
    case  9: fp1 = fopen("Data/memH9.mem","r"); 
         break; 
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    case 10: fp1 = fopen("Data/memH10.mem","r"); 
         break; 
    case 11: fp1 = fopen("Data/memH11.mem","r"); 
         break; 
    case 12: fp1 = fopen("Data/memH12.mem","r"); 
         break; 
    case 13: fp1 = fopen("Data/memH13.mem","r"); 
         break; 
    case 14: fp1 = fopen("Data/memH14.mem","r"); 
         break; 
    default: fp1 = fopen("Data/memH15.mem","r"); 
         break; 
    } 
    printf ("fp1 %i\n",fp1); 
 
    // ! allocate map to this problem  
    map_allocate (nmap); 
   
    // Read in the number of segments (decimal #) 
    fscanf (fp1,   "%i", &ncoef); 
    fscanf (fp1, "%llx", &incre); 
    fscanf (fp1, "%llx", &offsetV); 
    printf ("ncoef: %3i incre: %8llx\n",ncoef,incre); 
     
    // Accommodate lots of resutls  
    nc = 30000; 
     
    // array is enough room to hold 4 64 bit data pieces 
    // Perform cache allignment 
    arraym  = (int64_t *)Cache_Aligned_Allocate (4*ncoef*8); 
    xm      = (int64_t *)Cache_Aligned_Allocate (nc*8  ); 
    ym      = (int64_t *)Cache_Aligned_Allocate (nc*8  ); 
     
    // Get rid of first npc 
    fgets (hexstr, sizeof hexstr, fp1); 
     
    // Read all endpoints and coefficients into OBM banks 
    for (i=0;i<ncoef;i++)  { 
        fgets (hexstr, sizeof hexstr, fp1); 
         
        token         = strtok(hexstr,strDelimit); 
        sscanf (token, "%llx", &hexval); 
        arraym[i*4]   = hexval; 
 
        token  = strtok(NULL,strDelimit); 
        sscanf (token, "%llx", &hexval); 
        arraym[i*4+1] = hexval; 
 
        token  = strtok(NULL,strDelimit); 
        sscanf (token, "%llx", &hexval); 
        arraym[i*4+2] = hexval; 
 
        token  = strtok(NULL,strDelimit); 
        sscanf (token, "%llx", &hexval); 
        arraym[i*4+3] = hexval; 
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    } 
     
    // close the file 
    fclose(fp1); 
 
    // create some values to test with 
    xpts = 100; 
    for (ir=0;ir<xpts;ir++) { 
        arr_indx = ir % ncoef; 
        xm[ir] = arraym[arr_indx*4];       // Optional -0x2061d; 
        printf ("arr_indx = %3i  xm[%2i]= %10llx\n", 
                 arr_indx,   ir, xm[ir]); 
    } 
 
    printf ("Right Before MAP *** \nmain ncoef %i xpts %i\n", 
                                         ncoef,   xpts); 
    subr_map (arraym,ncoef,incre,offsetV,xm,ym,xpts,&tm0,mapnum); 
 
    printf ("\n************Back from the MAP!!!**********\n"); 
    printf ("\n**************    SHIFT8   ***************\n"); 
    printf ("%lld clocks\n", tm0); 
    for(i=0;i<xpts;i++){ 
        printf ("i: %3i x: %8llx fx: %10llx\n",i,xm[i],ym[i] ); 
    } 
    printf ("%lld clocks\n", tm1); 
 
    //      ! release the map resources 
    map_free (nmap); 
} 

 

b. subr.mc 
#include <libmap.h> 
 
void subr_map (int64_t  ac[],  
               int      ncoef, 
               int64_t  incre, 
               int64_t  offsetV, 
               int64_t  xc[], 
               int64_t  yc[], 
               int      xpts, 
               int64_t  *time0, 
               int      mapno) { 
 
    /**************************************************************** 
    *  Declarations 
    ****************************************************************/ 
    OBM_BANK_A (segend, int64_t, MAX_OBM_SIZE) 
    OBM_BANK_B (a,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_C (b,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_D (c,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_E (x,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_F (y,      int64_t, MAX_OBM_SIZE) 
    int        i,j, nbytes; 
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    int64_t    tm0,tm1,varx,varsq,vara,varb,varc,ax2,bx1,fx; 
    int64_t    varxtmp,indx; 
 
    /********************************************* 
    *  Read into OBM. Cooeff & segment endpoints * 
    *********************************************/ 
 
    // 4 data values (seg,a,b,c), 64bit Hex values 
    nbytes = 4*ncoef * 8;   
    DMA_CPU(CM2OBM,segend,MAP_OBM_stripe(1,"A,B,C,D"),ac,1,nbytes, 0); 
    wait_DMA (0); 
 
    //  Read in the Number of points 
    nbytes = xpts * 8; 
    DMA_CPU (CM2OBM, x, MAP_OBM_stripe(1,"E"), xc, 1, nbytes, 0); 
    wait_DMA (0); 
 
 
    //  DEBUG:  determine when in Map 
    printf ("\n\n************ NOW IN MAP **********\n"); 
    printf ("MAP subr ncoef %i xpts %i \n",ncoef,xpts); 
 
    /********************************************************** 
    *  Read timer and use selector to determine the segment   * 
    **********************************************************/ 
    read_timer (&tm0); 
     
    incre   >>= 16;         // asr to open integer bits 
    offsetV >>= 16;         // asr to match in subtraction 
 
    for (i=0;i<xpts;i++)  
    { 
        varx    = x[i];             // Take from OBM put in BRAM 
        indx    = varx * incre;     // Segment index Number * x input 
        indx  >>= 32;               // Return to 16 fraction points 
        indx    = indx - offsetV;   // Adjust index to interval start 
        indx  >>= 16;               // remove fracion 
        vara    = a[(int)indx];     // Move from OBM into BRAM 
        varb    = b[(int)indx]; 
        varc    = c[(int)indx]; 
 
        // ----- Square X and shift ----// 
        varx  >>= 8;                    // Remove lower 8 bits, 40.24 
        varsq   = varx*varx;            // Now we have 80.48 -> 16.48 
        varsq >>= 24;                   // SRL eliminate 40.24 
        if (varx < 0x8000000000000000)  // if varx is positive 
            varsq = varsq & 0x000000FFFFFFFFFF; // bitwise AND; 24bits 
 
        // --- X^2 * first Coefficient -// 
        vara  >>= 8;                    // remove lower 8 bits, 40.24 
        ax2     = varsq*vara;           // a[indx]; 
        ax2   >>= 16;                   // Want 32.32, so srl 16 
        if (vara < 0x8000000000000000)  // if both +ve  
            ax2 = ax2 & 0x0000FFFFFFFFFFFF;     // bitwise AND; 16bits 
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        // --- X * second Coefficient --// 
        varb  >>= 8;                    // Remove lower 8 bits, 40.24   
        bx1     = varx*varb;            // both are already shifted 
        bx1   >>= 16;                   // Return to 32.32 (int.fract) 
        if (varb < 0x8000000000000000)  // if both +ve 
            bx1 = bx1 & 0x0000FFFFFFFFFFFF;     // bitwise AND; 16bits 
 
        // -- 3 input add to complete --// 
        y[i]  = ax2+bx1+varc;           // no need to shift varc 
 
        // DEBUG 
        // printf("indx: %4llx -> %4li  varx: %6llx incre: %6llx\n", 
        //         indx,      (int)indx,varx,       incre);  
    } 
 
    // Time it took to compute  
    read_timer (&tm1); 
    *time0 = tm1-tm0; 
     
 
    /**************************************************************** 
    *  Send back the results 
    ****************************************************************/ 
    nbytes = xpts * 8; 
    DMA_CPU (OBM2CM, y, MAP_OBM_stripe(1,"F"), yc, 1, nbytes, 0); 
    wait_DMA (0); 
} 
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C.2 NON-UNIFORM SEGMENTATION 

1. Floating Point 

a. Main.c 
#include<stdio.h> 
#include<stdlib.h> 
#include<strings.h> 
#include<libmap.h> 
 
// Subroutine initialization in Main 
void  subr_map( double  acoef[], 
                int     ncoef, 
                double  x[], 
                double  y[], 
                double  ys[],     
                int     npts, 
                int64_t *time0, 
                int64_t *time1, 
                int     mapnum); 
 
// MAIN 
main ()  { 
 
    // Initialize Variables 
    FILE    *fp1; 
    double  *array, *x, *y, *ys; 
    double  val; 
    int     i,ir,nc,npts, mapnum,nmap, ncoef,arr_indx; 
    int64_t tm0, tm1; 
 
    printf ("\n***START UP THE NFG ***\n"); 
 
    // select map number 
    mapnum = 0; 
    nmap   = 1; 
 
    //      ! allocate map to this problem 
    map_allocate (nmap); 
 
    // Depending on number segments 
    //nc = 50;      // For 16 bit accuracy 
    nc = 200;   // For 23 bits 
    //nc = 1500;    // For 32 bits 
    //nc = 5000;    // For 42 bits 
    array     = (double*)Cache_Aligned_Allocate (4*nc*8); 
    x         = (double*)Cache_Aligned_Allocate (nc*8  ); 
    y         = (double*)Cache_Aligned_Allocate (nc*8  ); 
    ys        = (double*)Cache_Aligned_Allocate (nc*8  ); 
 
 
    fp1 = fopen ("Data/memDEC.mem","r"); 
    fscanf (fp1, "%i", &ncoef); 
    // check if the right thing was read 
    printf ("  ncoef   %i\n",ncoef); 
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    // read_file 
    for (i=0;i<ncoef;i++)  { 
        fscanf (fp1, "%lf", &val); 
        array[i*4] = val; 
 
        fscanf (fp1, "%lf", &val); 
        array[i*4+1] = val; 
 
        fscanf (fp1, "%lf", &val); 
        array[i*4+2] = val; 
 
        fscanf (fp1, "%lf", &val); 
        array[i*4+3] = val; 
    } // end read_file 
 
/*  // print_array 
    for (i=0;i<ncoef;i++) { 
        printf ("  endpt %10.6f a %10.6f b %10.6f c %10.6f\n", 
        array[4*i+0], 
        array[4*i+1], 
        array[4*i+2], 
        array[4*i+3]); 
    } // end print_array   
*/ 
 
    npts = 100; 
    // create_samples 
    for (ir=0;ir<npts;ir++) { 
        arr_indx = ir % ncoef; 
        x[ir]    = array[arr_indx*4]; 
        printf ("ir %3i x_values are: %lf\n",ir,x[ir]); 
    } //end create_samples 
 
    printf ("main ncoef %i npts %i\n",ncoef,npts); 
 
    subr_map (array, ncoef, x, y, ys, npts, &tm0, &tm1, mapnum); 
 
    printf ("\n************ BACK FROM MAP **********\n"); 
    printf ("%lld clocks\n", tm0); 
    printf ("%lld clocks\n", tm1); 
 
    for (i=0;i<npts;i++) { 
        printf ("x: %5.18lf  ysubr: %5.18lf  SRCMacro2^x: %5.18f\n", 
                 x[i],         y[i],                ys[i]); 
//  printf ("x: %5.18f  ysubr: %5.18f\n",x[i],y[i]); 
    } 
 
    //      ! release the map resources 
    map_free (nmap); 
} 
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b. subr.mc
2

21
2

x

e
π

−⎛ ⎞
⎜ ⎟⎜ ⎟
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#include <libmap.h> 
 
void subr_map ( double  ac[],      
                int     ncoef, 
                double  xc[],      
                double  yc[], 
                double  ys[], 
                int     npts,         
                int64_t *time0, 
                int64_t *time1,   
                int     mapno) 
{ 
 
    /****************************************************************** 
    *  Declarations 
    ******************************************************************/ 
    OBM_BANK_A (ysmap,  double, MAX_OBM_SIZE) 
    OBM_BANK_B (a,      double, MAX_OBM_SIZE) 
    OBM_BANK_C (b,      double, MAX_OBM_SIZE) 
    OBM_BANK_D (c,      double, MAX_OBM_SIZE) 
    OBM_BANK_E (x,      double, MAX_OBM_SIZE) 
    OBM_BANK_F (y,      double, MAX_OBM_SIZE) 
    int         i,j, nbytes, indx, sel; 
    int64_t     tm0,tm1; 
    double      varx; 
 
    /******************************************* 
    *  Read in the cooeff and segment endpoints 
    *******************************************/ 
    nbytes = 4*ncoef * 8;  /* 4 data values (seg,a,b,c), 64bits each */ 
    DMA_CPU (CM2OBM, ysmap, MAP_OBM_stripe(1,"A,B,C,D"), ac, 1, nbytes, 
0); 
    wait_DMA (0); 
 
    /****************************************************************** 
    *  Read in the Number of points 
    ******************************************************************/ 
    nbytes = npts * 8; 
    DMA_CPU (CM2OBM, x, MAP_OBM_stripe(1,"E"), xc, 1, nbytes, 0); 
    wait_DMA (0); 
 
    /****************************************************************** 
    *  Useful in Debug Mode to determine when in Map 
    ******************************************************************/ 
    printf ("\n\n************ NOW IN MAP **********\n"); 
    printf ("MAP subr ncoef %i npts %i\n",ncoef,npts); 
 
    /****************************************************************** 
    *  Read timer and use a constant for UNIFORM Segmentation 
    ******************************************************************/ 
    read_timer (&tm0); 
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    for (i=0;i<npts;i++) 
    { 
        varx = x[i]; 
     
 
        if ( varx <= 1.010456600772177400) 
                sel =  1; 
        else if ( varx <= 1.254138569173091300) 
                sel =  2; 
        else if ( varx <= 1.393018722518969900) 
                sel =  3; 
        else if ( varx <= 1.414213562373095100) 
                sel =  4; 
        switch (sel) 
        { 
            case  1:  
            select_pri_64bit_32val(  varx <= 0.065896761049097793,   0, 
                                     varx <= 0.113411555832503830,   1, 
                                     varx <= 0.155068672182882060,   2, 
                                     varx <= 0.193392483833442240,   3, 
                                     varx <= 0.229466279456250750,   4, 
                                     varx <= 0.263888271986404410,   5, 
                                     varx <= 0.297033228392699020,   6, 
                                     varx <= 0.329159950015850300,   7, 
                                     varx <= 0.360453699017791120,   8, 
                                     varx <= 0.391055896896180420,   9, 
                                     varx <= 0.421076852419192020,  10, 
                                     varx <= 0.450608489560304140,  11, 
                                     varx <= 0.479725761713275970,  12, 
                                     varx <= 0.508490894337077280,  13, 
                                     varx <= 0.536959041815795230,  14, 
                                     varx <= 0.565178287458633520,  15, 
                                     varx <= 0.593191057714890110,  16, 
                                     varx <= 0.621035536388932610,  17, 
                                     varx <= 0.648747078855175910,  18, 
                                     varx <= 0.676359626273058010,  19, 
                                     varx <= 0.703904291372063890,  20, 
                                     varx <= 0.731409358451725390,  21, 
                                     varx <= 0.758903111811573990,  22, 
                                     varx <= 0.786413835751141770,  23, 
                                     varx <= 0.813969814569960310,  24, 
                                     varx <= 0.841596504137608230,  25, 
                                     varx <= 0.869322188753617440,  26, 
                                     varx <= 0.897175152717519460,  27, 
                                     varx <= 0.925183680328846240,  28, 
                                     varx <= 0.953378884317082620,  29, 
                                     varx <= 0.981791877411713590,  30, 
                                                          31,   &indx); 
            break; 
            case  2:  
     
            select_pri_64bit_8val(   varx <= 1.039409823987864900,  32, 
                                     varx <= 1.068692559293097600,  33, 
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                                     varx <= 1.098347233137172600,  34, 
                                     varx <= 1.128421928829294700,  35, 
                                     varx <= 1.158970386538573600,  36, 
                                     varx <= 1.190056245938955900,  37, 
                                     varx <= 1.221750217779271400,  38, 
                                                          39,   &indx); 
            break; 
            case  3:  
     
            select_pri_64bit_4val(   varx <= 1.287320295168777200,  40, 
                                     varx <= 1.321418432469292400,  41, 
                                     varx <= 1.356585716292107800,  42, 
                                                          43,   &indx); 
            break; 
            case  4:  
     
            select_pri_64bit_4val(   varx <= 1.414213562373095100,  44, 
                                     varx <= 1.414213562373095100,  44, 
                                     varx <= 1.414213562373095100,  44, 
                                                          44,   &indx); 
            break; 
        } 
 
                      
        y[i] = a[indx]*varx*varx + varx*b[indx] + c[indx]; 
        //    printf ("i %3i a %f b %f c %f x %20.18f y %20.18f\n", 
        //        indx,a[indx],b[indx],c[indx],varx,y[i]); 
    } 
 
    read_timer (&tm1); 
    *time0 = tm1-tm0; 
 
    read_timer (&tm0); 
    // Function 1 
    for (i=0; i<npts; i++) 
      ysmap[i] = (1/sqrtf(2*3.14159265258979))*powf(2.71828182845905,-
0.5*powf(x[i],2)); // func 14 
 
 
//ysmap[i] = powf(2,x[i]);                  // func 1 
//ysmap[i] = 1/x[i];                        // func 2 
//ysmap[i] = sqrtf(x[i]);                   // func 3 
//ysmap[i] = 1/sqrtf(x[i]);                 // func 4 
//ysmap[i] = logf(x[i])/0.693147180559945;  // func 5 
//ysmap[i] = logf(x[i]);                    // func 6 
//ysmap[i] = sinf(x[i]*3.14159265258979);   // func 7 
//ysmap[i] = cosf(x[i]*3.14159265258979);   // func 8 
//ysmap[i] = tanf(x[i]*3.14159265258979);   // func 9 
//ysmap[i] = sqrt(-1*logf(x[i]));           // func 10 
//ysmap[i] = powf(tanf(x[i]*3.14159265258979),2); // func 11 
//ysmap[i] = -(x[i]*logf(x[i])/0.69314718055994 +(1-x[i])*logf(1-
x[i])/0.69314718055994 );// func 12 
//ysmap[i] = 1/(1+powf(0.693147180559945,(-1*x[i])));  // func 13 
//ysmap[i] = (1/sqrtf(2*3.14159265258979))*powf(2.71828182845905,-
0.5*powf(x[i],2)); // func 14 
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//ysmap[i] = sinf(powf(2.71828182845905,x[i]));   // func 15 
     read_timer (&tm1); 
 
    *time1 = tm1 - tm0; 
 
    /****************************************************************** 
    *  Send back the results 
    ******************************************************************/ 
    nbytes = npts * 8; 
    DMA_CPU (OBM2CM, y, MAP_OBM_stripe(1,"F"), yc, 1, nbytes, 0); 
    wait_DMA (0); 
 
    nbytes = npts * 8; 
    DMA_CPU (OBM2CM, ysmap, MAP_OBM_stripe(1,"A"), ys, 1, nbytes, 0); 
    wait_DMA (0); 
 
} 

 

2. Fixed Point 

a. Main.c 
#include<stdio.h> 
#include<stdlib.h> 
#include<strings.h> 
#include<libmap.h> 
#include<math.h> 
 
// Subroutine initialization in Main 
void   subr_map (int64_t acoef[],  
                 int     ncoef, 
                 int64_t x[],  
                 int64_t y[],  
                 int     xpts, 
                 int64_t *time0, 
                 int     mapnum); 
 
// MAIN  
main ()  { 
     
    // Initialize Variables 
    FILE    *fp1; 
    int     i,ir,nc,xpts; 
    int     mapnum,nmap,ncoef; 
    int     arr_indx; 
    int64_t *arraym,*xm,*ym; 
    int64_t tm0,tm1,hexval; 
    char    hexstr[80], *token, *stpstr, strDelimit[]=" \n"; 
 
    // Starting NFG 
    printf ("\n***START UP THE NFG ***\n"); 
    mapnum = 0;  
    nmap   = 1; 
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    // ! allocate map to this problem  
    map_allocate (nmap); 
    nc = 300; 
 
    // array is enough room to hold 4 64 bit data pieces 
    // Perform cache allignment 
    arraym  = (int64_t *)Cache_Aligned_Allocate (4*nc*8); 
    xm      = (int64_t *)Cache_Aligned_Allocate (nc*8  ); 
    ym      = (int64_t *)Cache_Aligned_Allocate (nc*8  ); 
   
    // Open the Hex data file to read 
    fp1    = fopen ("Data/memHEX0x.mem","r"); 
    printf ("fp1 %i\n",fp1); 
 
    // Read in the number of segments (decimal #) 
    fscanf (fp1, "%i", &ncoef); 
    printf ("  ncoef   %i\n",ncoef); 
     
    // Get rid of first npc 
    fgets (hexstr, sizeof hexstr, fp1); 
     
    // Read all endpoints and coefficients into OBM banks 
    for (i=0;i<ncoef;i++)  { 
        fgets (hexstr, sizeof hexstr, fp1); 
         
        token         = strtok(hexstr,strDelimit); 
        sscanf (token, "%llx", &hexval); 
        arraym[i*4]   = hexval; 
 
        token  = strtok(NULL,strDelimit); 
        sscanf (token, "%llx", &hexval); 
        arraym[i*4+1] = hexval; 
 
        token  = strtok(NULL,strDelimit); 
        sscanf (token, "%llx", &hexval); 
        arraym[i*4+2] = hexval; 
 
        token  = strtok(NULL,strDelimit); 
        sscanf (token, "%llx", &hexval); 
        arraym[i*4+3] = hexval; 
    } 
    fclose(fp1);   
/* 
    // print out the contents of the array first 30 elements only  
    for (i=0;i<30;i++) { 
        printf ("endpoint: %llx a: %llx  b: %llx  c: %llx \n", 
        arraym[i*4],arraym[i*4+1],arraym[i*4+2],arraym[i*4+3]); 
    } 
*/ 
    // create some values to test with 
    xpts = 30; 
    for (ir=0;ir<xpts;ir++) { 
        //arr_indx = (int) fabs(remainder(ir,20)); 
        arr_indx = ir % ncoef; 
        xm[ir] = arraym[arr_indx*4];//+0xa0000000; 
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        printf ("arr_indx = %d  xm[%d]= %llx\n",arr_indx,ir,xm[ir]); 
    } 
 
    printf ("Right Before MAP *** \nmain ncoef %i xpts 
%i\n",ncoef,xpts); 
    subr_map (arraym, ncoef, xm, ym, xpts, &tm0, mapnum); 
 
    printf ("\n************Back from the MAP!!!********** \n"); 
    printf ("%lld clocks\n", tm0); 
    for(i=0;i<xpts;i++){ 
    printf ("i: %3d x values: %16llx   y values:  %16llx  \n", 
             i,           xm[i],            ym[i]); 
    } 
 
    //      ! release the map resources 
    map_free (nmap); 
} 

 

b. subr.mc 
#include <libmap.h> 
 
void subr_map (int64_t  ac[],  
               int      ncoef, 
               int64_t  xc[], 
               int64_t  yc[], 
               int      xpts, 
               int64_t  *time0, 
               int      mapno) { 
 
    /**************************************************************** 
    *  Declarations 
    ****************************************************************/ 
    OBM_BANK_A (segend, int64_t, MAX_OBM_SIZE) 
    OBM_BANK_B (a,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_C (b,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_D (c,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_E (x,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_F (y,      int64_t, MAX_OBM_SIZE) 
    int        i,j, nbytes, sel; 
    int64_t    tm0,tm1,indx,varx,varsq,vara,varb,varc,ax2,bx1,fx; 
 
    /********************************************* 
    *  Read into OBM. Cooeff & segment endpoints * 
    *********************************************/ 
 
    // 4 data values (seg,a,b,c), 64bit Hex values 
    nbytes = 4*ncoef * 8;   
    DMA_CPU (CM2OBM, segend, MAP_OBM_stripe(1,"A,B,C,D"), ac, 1, 
nbytes, 0); 
    wait_DMA (0); 
 
    //  Read in the Number of points 
    nbytes = xpts * 8; 
    DMA_CPU (CM2OBM, x, MAP_OBM_stripe(1,"E"), xc, 1, nbytes, 0); 
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    wait_DMA (0); 
 
 
    //  DEBUG:  determine when in Map 
    printf ("\n\n************ NOW IN MAP **********\n"); 
    printf ("MAP subr ncoef %i xpts %i \n",ncoef,xpts); 
 
    /********************************************************** 
    *  Read timer and use selector to determine the segment   * 
    **********************************************************/ 
    read_timer (&tm0); 
    for (i=0;i<xpts;i++)  
    { 
        varx = x[i]; 
 
        if ( varx <= 0x000000001816a7a6) 
                sel =  1; 
        else if ( varx <= 0x000000003b3b34a8) 
                sel =  2; 
        else if ( varx <= 0x0000000040000000) 
                sel =  3; 
 
        switch (sel) 
        { 
            case  1:  
            select_pri_64bit_128val( varx <= 0x0000000000841cdf,   0, 
                                     varx <= 0x0000000000885b08,   1, 
                                     varx <= 0x00000000008cbea6,   2, 
                                     varx <= 0x000000000091438e,   3, 
                                     varx <= 0x000000000095edeb,   4, 
                                     varx <= 0x00000000009abdbc,   5, 
                                     varx <= 0x00000000009fb301,   6, 
                                     varx <= 0x0000000000a4d1e3,   7, 
                                     varx <= 0x0000000000aa1a64,   8, 
                                     varx <= 0x0000000000af8c81,   9, 
                                     varx <= 0x0000000000b5283d,  10, 
                                     varx <= 0x0000000000baf1bf,  11, 
                                     varx <= 0x0000000000c0e908,  12, 
                                     varx <= 0x0000000000c71241,  13, 
                                     varx <= 0x0000000000cd6d6a,  14, 
                                     varx <= 0x0000000000d3fa84,  15, 
                                     varx <= 0x0000000000dabdb8,  16, 
                                     varx <= 0x0000000000e1b705,  17, 
                                     varx <= 0x0000000000e8e66b,  18, 
                                     varx <= 0x0000000000f05015,  19, 
                                     varx <= 0x0000000000f7f401,  20, 
                                     varx <= 0x0000000000ffd65a,  21, 
                                     varx <= 0x000000000107f71f,  22, 
                                     varx <= 0x0000000001105651,  23, 
                                     varx <= 0x000000000118f818,  24, 
                                     varx <= 0x000000000121e09e,  25, 
                                     varx <= 0x00000000012b0fe3,  26, 
                                     varx <= 0x00000000013485e7,  27, 
                                     varx <= 0x00000000013e46d4,  28, 
                                     varx <= 0x00000000014856d2,  29, 
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                                     varx <= 0x000000000152b5e2,  30, 
                                     varx <= 0x00000000015d6404,  31, 
                                     varx <= 0x000000000168698a,  32, 
                                     varx <= 0x000000000173c675,  33, 
                                     varx <= 0x00000000017f7ac4,  34, 
                                     varx <= 0x00000000018b8aa1,  35, 
                                     varx <= 0x000000000197fa35,  36, 
                                     varx <= 0x0000000001a4cda9,  37, 
                                     varx <= 0x0000000001b204fe,  38, 
                                     varx <= 0x0000000001bfa45d,  39, 
                                     varx <= 0x0000000001cdabc6,  40, 
                                     varx <= 0x0000000001dc238b,  41, 
                                     varx <= 0x0000000001eb0bad,  42, 
                                     varx <= 0x0000000001fa6855,  43, 
                                     varx <= 0x00000000020a3dac,  44, 
                                     varx <= 0x00000000021a8fdc,  45, 
                                     varx <= 0x00000000022b5ee4,  46, 
                                     varx <= 0x00000000023cb318,  47, 
                                     varx <= 0x00000000024e8c77,  48, 
                                     varx <= 0x000000000260ef2a,  49, 
                                     varx <= 0x000000000273e386,  50, 
                                     varx <= 0x0000000002876988,  51, 
                                     varx <= 0x00000000029b8985,  52, 
                                     varx <= 0x0000000002b0437b,  53, 
                                     varx <= 0x0000000002c59fbf,  54, 
                                     varx <= 0x0000000002db9e4f,  55, 
                                     varx <= 0x0000000002f2477f,  56, 
                                     varx <= 0x0000000003099f78,  57, 
                                     varx <= 0x000000000321ae8c,  58, 
                                     varx <= 0x00000000033a74bc,  59, 
                                     varx <= 0x000000000353fa5a,  60, 
                                     varx <= 0x00000000036e4390,  61, 
                                     varx <= 0x00000000038958b0,  62, 
                                     varx <= 0x0000000003a539bb,  63, 
                                     varx <= 0x0000000003c1f32c,  64, 
                                     varx <= 0x0000000003df892d,  65, 
                                     varx <= 0x0000000003fdffe7,  66, 
                                     varx <= 0x00000000041d5fac,  67, 
                                     varx <= 0x00000000043db0d1,  68, 
                                     varx <= 0x00000000045efba6,  69, 
                                     varx <= 0x0000000004814457,  70, 
                                     varx <= 0x0000000004a48f0b,  71, 
                                     varx <= 0x0000000004c8e83f,  72, 
                                     varx <= 0x0000000004ee541c,  73, 
                                     varx <= 0x000000000514df1f,  74, 
                                     varx <= 0x00000000053c8d71,  75, 
                                     varx <= 0x0000000005656765,  76, 
                                     varx <= 0x00000000058f7975,  77, 
                                     varx <= 0x0000000005bac7cd,  78, 
                                     varx <= 0x0000000005e75ee8,  79, 
                                     varx <= 0x0000000006154718,  80, 
                                     varx <= 0x00000000064488b1,  81, 
                                     varx <= 0x000000000675302f,  82, 
                                     varx <= 0x0000000006a745e3,  83, 
                                     varx <= 0x0000000006dad222,  84, 
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                                     varx <= 0x00000000070fe58f,  85, 
                                     varx <= 0x0000000007468456,  86, 
                                     varx <= 0x00000000077ebf1a,  87, 
                                     varx <= 0x0000000007b89e30,  88, 
                                     varx <= 0x0000000007f42e12,  89, 
                                     varx <= 0x0000000008317b3d,  90, 
                                     varx <= 0x000000000870922d,  91, 
                                     varx <= 0x0000000008b17f5e,  92, 
                                     varx <= 0x0000000008f45375,  93, 
                                     varx <= 0x00000000093916c6,  94, 
                                     varx <= 0x00000000097fd9f5,  95, 
                                     varx <= 0x0000000009c8a97f,  96, 
                                     varx <= 0x000000000a139609,  97, 
                                     varx <= 0x000000000a60b038,  98, 
                                     varx <= 0x000000000ab00489,  99, 
                                     varx <= 0x000000000b01a3a1, 100, 
                                     varx <= 0x000000000b559e25, 101, 
                                     varx <= 0x000000000bac04bb, 102, 
                                     varx <= 0x000000000c04e808, 103, 
                                     varx <= 0x000000000c605cdb, 104, 
                                     varx <= 0x000000000cbe6fb0, 105, 
                                     varx <= 0x000000000d1f3980, 106, 
                                     varx <= 0x000000000d82c6c5, 107, 
                                     varx <= 0x000000000de93079, 108, 
                                     varx <= 0x000000000e528741, 109, 
                                     varx <= 0x000000000ebedfeb, 110, 
                                     varx <= 0x000000000f2e5370, 111, 
                                     varx <= 0x000000000fa0f275, 112, 
                                     varx <= 0x000000001016d5f3, 113, 
                                     varx <= 0x00000000109016e0, 114, 
                                     varx <= 0x00000000110cca0d, 115, 
                                     varx <= 0x00000000118d0871, 116, 
                                     varx <= 0x000000001210e6db, 117, 
                                     varx <= 0x000000001298826c, 118, 
                                     varx <= 0x000000001323f41d, 119, 
                                     varx <= 0x0000000013b3590f, 120, 
                                     varx <= 0x000000001446c611, 121, 
                                     varx <= 0x0000000014de5c6e, 122, 
                                     varx <= 0x00000000157a3947, 123, 
                                     varx <= 0x00000000161a7594, 124, 
                                     varx <= 0x0000000016bf32a0, 125, 
                                     varx <= 0x0000000017688d8d, 126, 
                                                        127,   &indx); 
            break; 
            case  2:  
     
            select_pri_64bit_32val(  varx <= 0x0000000018c9a234, 128, 
                                     varx <= 0x0000000019819a5b, 129, 
                                     varx <= 0x000000001a3eb58d, 130, 
                                     varx <= 0x000000001b01193f, 131, 
                                     varx <= 0x000000001bc8e294, 132, 
                                     varx <= 0x000000001c963b27, 133, 
                                     varx <= 0x000000001d694444, 134, 
                                     varx <= 0x000000001e422789, 135, 
                                     varx <= 0x000000001f210a6a, 136, 
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                                     varx <= 0x0000000020061683, 137, 
                                     varx <= 0x0000000020f17574, 138, 
                                     varx <= 0x0000000021e350d9, 139, 
                                     varx <= 0x0000000022dbd679, 140, 
                                     varx <= 0x0000000023db2ff2, 141, 
                                     varx <= 0x0000000024e18b0b, 142, 
                                     varx <= 0x0000000025ef158a, 143, 
                                     varx <= 0x000000002703fd37, 144, 
                                     varx <= 0x0000000028207402, 145, 
                                     varx <= 0x000000002944a7b1, 146, 
                                     varx <= 0x000000002a70ce5e, 147, 
                                     varx <= 0x000000002ba519fa, 148, 
                                     varx <= 0x000000002ce1c09e, 149, 
                                     varx <= 0x000000002e26f43b, 150, 
                                     varx <= 0x000000002f74ef13, 151, 
                                     varx <= 0x0000000030cbe73f, 152, 
                                     varx <= 0x00000000322c12da, 153, 
                                     varx <= 0x000000003395ac27, 154, 
                                     varx <= 0x000000003508f191, 155, 
                                     varx <= 0x0000000036861933, 156, 
                                     varx <= 0x00000000380d5d4f, 157, 
                                     varx <= 0x00000000399efc52, 158, 
                                                        159,   &indx); 
            break; 
            case  3:  
     
            select_pri_64bit_4val(   varx <= 0x000000003ce244bd, 160, 
                                     varx <= 0x000000003e9466d5, 161, 
                                     varx <= 0x0000000040000000, 162, 
                                                         162,   &indx); 
            break; 
        } 
 
        // ------ Shift by 8 bits - -----// 
        vara    = a[indx]; 
        varb    = b[indx]; 
        varx  >>= 8;        // Shift right 8 for mult 40.24 
        vara  >>= 8;        // Shift right 8 
        varb  >>= 8;        // Shift right 8 
     
 
        // ----- Square X and shift ----// 
        varsq   = varx*varx;            // Now we have 80.48 -> 16.48 
        varsq >>= 24;                   // SRL eliminate 40.24 
        varsq   = varsq & 0x000000FFFFFFFFFF; // bitwise AND; 24bits 
 
        // -- X^2 * first Coefficient --// 
        ax2     = varsq*vara;           // a[indx]; 
        ax2   >>= 16;                   // Want 32.32, so srl 16 
        if (vara < 0x8000000000000000)  // if both +ve  
            ax2 = ax2 & 0x0000FFFFFFFFFFFF;     // bitwise AND; 16bits 
 
        // --- X * second Coefficient --// 
        bx1     = varx*varb;            // both are already shifted 
        bx1   >>= 16;                   // Return to 32.32 (int.fract) 
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        if (varb < 0x8000000000000000)  // if both +ve 
            bx1 = bx1 & 0x0000FFFFFFFFFFFF;     // bitwise AND; 16bits 
 
        // -- 3 input add to complete --// 
        y[i]    = ax2+bx1+c[indx];    // Add all, no need to shift varc 
 
        // DEBUG: printf for debug information on variable status 
        printf ("indx: %3i, varx: %8llx vasq: %10llx a: %10llx ax2: 
%16llx b: %16llx bx1: %16llx c: %10llx fx: %16llx \n", 
                 (int)indx, varx,     varsq,      vara,        ax2, 
varb,        bx1,   c[indx],        y[i]); 
                  
    } 
 
    // Time it took to compute  
    read_timer (&tm1); 
    *time0 = tm1-tm0; 
     
 
    /**************************************************************** 
    *  Send back the results 
    ****************************************************************/ 
    nbytes = xpts * 8; 
    DMA_CPU (OBM2CM, y, MAP_OBM_stripe(1,"F"), yc, 1, nbytes, 0); 
    wait_DMA (0); 
} 

 

3. Fixed Point with Macro 

This implementation did not produce the correct values. The multiplier macro 

used in this case was the VHDL macro shown in Appendix B. 

The user can add macros to the Makefile that are coded in VHDL, Verilog or in 

both description languages.  Here we show two VHDL files added to the Makefile and the 

blk.v and info files. 

 

a. Makefile 
# $Id: Makefile,v 2.0.0.1 2005/06/10 23:12:59 hammes Exp $ 
# 
# Copyright 2003 SRC Computers, Inc.  All Rights Reserved. 
# 
#       Manufactured in the United States of America. 
# 
# SRC Computers, Inc. 
# 4240 N Nevada Avenue 
# Colorado Springs, CO 80907 
# (v) (719) 262-0213 
# (f) (719) 262-0223 
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# 
# No permission has been granted to distribute this software 
# without the express permission of SRC Computers, Inc. 
# 
# This program is distributed WITHOUT ANY WARRANTY OF ANY KIND. 
# 
# ----------------------------------- 
 
# ---------------------------------- 
# User defines FILES, MAPFILES, and BIN here 
# ---------------------------------- 
FILES       = main.c 
 
MAPFILES    = subr.mc 
 
BIN         = nfg 
 
# ---------------------------------- 
# Multi chip info provided here 
# (Leave commented out if not used) 
# ---------------------------------- 
#PRIMARY    = <primary file 1>   <primary file 2> 
 
#SECONDARY  = <secondary file 1> <secondary file 2> 
 
#CHIP2      = <file to compile to user chip 2> 
 
#----------------------------------- 
# User defined directory of code routines 
# that are to be inlined 
#------------------------------------ 
 
#INLINEDIR  = 
 
# ----------------------------------- 
# User defined macros info supplied here 
# 
# (Leave commented out if not used) 
# ----------------------------------- 
 
#MACROS      = my_macro1/mult_vrlg_64.v 
#MY_BLKBOX   = my_macro1/blk.v 
#MY_NGO_DIR  = my_macro1 
#MY_INFO     = my_macro1/info 
 
MACROS      = my_macro/mult_32to32.vhd \ 
              my_macro/add_32.vhd 
MY_BLKBOX   = my_macro/blk.v 
MY_NGO_DIR  = my_macro 
MY_INFO     = my_macro/info 
 
# ----------------------------------- 
# Floating point macros selection  
# ----------------------------------- 
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#FPMODE     = SRC_IEEE_V1 # Default SRC version IEEE 
#FPMODE     = SRC_IEEE_V2 # Size reduced SRC IEEE with  
                  # special rounding mode 
# ----------------------------------- 
# User supplied MCC and MFTN flags 
# ----------------------------------- 
 
MCCFLAGS    = -log -explain_dep -g -keep -use_par  
MFTNFLAGS   = -log -v 
 
# ----------------------------------- 
# User supplied flags for C & Fortran compilers 
# ----------------------------------- 
 
CC      = icc   # icc   for Intel cc for Gnu 
FC      = ifort # ifort for Intel f77 for Gnu 
LD      = icc   # for C codes 
#LD     = ifort # for Fortran or C/Fortran mixed 
 
CFLAGS  =  
FFLAGS  =  
LDFLAGS =   # Flags to include libs if needed 
# ----------------------------------- 
# VCS simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
 
#USEVCS     = yes   # YES or yes to use vcs instead of vcsi 
#VCSDUMP    = yes   # YES or yes to generate vcd+ trace dump 
# ----------------------------------- 
# No modifications are required below 
# ----------------------------------- 
MAKIN   ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make 
include $(MAKIN) 

 

b. subr.mc 
#include <libmap.h> 
 
void subr_map (int64_t  ac[],  
               int      ncoef, 
               int64_t  xc[], 
               int64_t  yc[], 
               int      xpts, 
               int64_t  *time0, 
               int      mapno) { 
 
    /**************************************************************** 
    *  Declarations 
    ****************************************************************/ 
    OBM_BANK_A (segend, int64_t, MAX_OBM_SIZE) 
    OBM_BANK_B (a,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_C (b,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_D (c,      int64_t, MAX_OBM_SIZE) 
    OBM_BANK_E (x,      int64_t, MAX_OBM_SIZE) 
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    OBM_BANK_F (y,      int64_t, MAX_OBM_SIZE) 
    int        i,j, nbytes; 
    int64_t    tm0,tm1,indx; 
    int        varx,vara,varb,varc,prod3,prod2,prod1,fx; 
    int        xg,ag,bg,cg; 
 
    /********************************************* 
    *  Read into OBM. Cooeff & segment endpoints * 
    *********************************************/ 
 
    // 4 data values (seg,a,b,c), 64bit Hex values 
    nbytes = 4*ncoef * 8;   
    DMA_CPU (CM2OBM, segend, MAP_OBM_stripe(1,"A,B,C,D"), ac, 1, 
nbytes, 0); 
    wait_DMA (0); 
 
    //  Read in the Number of points 
    nbytes = xpts * 8; 
    DMA_CPU (CM2OBM, x, MAP_OBM_stripe(1,"E"), xc, 1, nbytes, 0); 
    wait_DMA (0); 
 
     
    //  DEBUG:  Tell me I'm in the MAP 
    printf ("\n\n************ NOW IN MAP **********\n"); 
    printf ("MAP subr ncoef %i xpts %i \n",ncoef,xpts); 
 
    /********************************************************** 
    *  Read timer and use selector to determine the segment   * 
    **********************************************************/ 
    read_timer (&tm0); 
    for (i=0;i<xpts;i++)  
    { 
        
        split_64to32(x[i],&xg,&varx); 
      
        // SEGMENT INDEX ENCODER 
        // Based on x input, determine which index to select 
        // the coefficients for approximation 
     
        select_pri_32bit_16val( varx<=  0x12de,  0, 
                                varx<=  0x2087,  1, 
                                varx<=  0x2c8c,  2, 
                                varx<=  0x37a9,  3, 
                                varx<=  0x422b,  4, 
                                varx<=  0x4c45,  5, 
                                varx<=  0x5613,  6, 
                                varx<=  0x5faa,  7, 
                                varx<=  0x6916,  8, 
                                varx<=  0x7268,  9, 
                                varx<=  0x7bac, 10, 
                                varx<=  0x7fff, 11, 
                                varx<=  0x7fff, 11, 
                                varx<=  0x7fff, 11, 
                                varx<=  0x7fff, 11, 
                                                11, &indx); 



 168

        indx = i%12;  
        split_64to32(a[indx],&ag,&vara); 
        split_64to32(b[indx],&bg,&varb); 
        split_64to32(c[indx],&cg,&varc); 
 
        // use macro multiplier 
        my_mult(varx,varx,&prod1);  // prod1 = x^2  term 
     
        // Perform together 
        my_mult(prod1,vara,&prod2); // prod2 = ax^2 term 
        my_mult(varx, varb,&prod3); // prod3 = bx   term 
     
        // Perform final add stage 
        //my_add(prod2,prod3,varc,&fx);   // 3 input macro adder 
        fx = prod2+prod3+varc; 
         
        // Perform final add stage 
        // Put result in OBM 
        y[i] = fx & 0x00000000FFFFFFFF; 
     
        // DEBUG: printf for debug information on variable status 
        //printf ("indx: %3i a[]: %llx varb: %x c: %x x: %x fx: %lx, 
y[]: %llx\n",  
        //           indx,a[indx],varb,varc,varx,fx,y[i]); 
        //  printf ("indx: %3i a: %x b: %x c: %x x: %x fx: %lx, y[]: 
%llx\n",  
        //                 indx,vara,varb,varc,varx,fx,y[i]); 
        //  printf ("prod1: %x prod2: %x prod3: %x \n",  
        //                 prod1, prod2, prod3); 
 
    }   // End for(i=0;i<xpts;i++) 
     
    read_timer (&tm1); 
    *time0 = tm1-tm0; 
 
    /**************************************************************** 
    *  Send back the results 
    ****************************************************************/ 
    nbytes = xpts * 8; 
    DMA_CPU (OBM2CM, y, MAP_OBM_stripe(1,"F"), yc, 1, nbytes, 0); 
    wait_DMA (0); 
} 

 

c. blk.v 
module mult_32to32(a, b, clk, prod)  /* synthesis syn_black_box  */  ; 
    input  [31:0] a; 
    input  [31:0] b; 
    output [31:0] prod; 
    input  clk; 
endmodule 
 
module add_32(a, b, c, sum) /* synthesis adderparthere */ ; 
    input  [31:0] a; 
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    input  [31:0] b; 
    input  [31:0] c; 
    output [31:0] sum; 
endmodule 

 

d. info 
BEGIN_DEF "my_mult" 
    MACRO     = "mult_32to32"; 
    STATEFUL  = NO; 
    EXTERNAL  = NO; 
    PIPELINED = YES; 
    LATENCY   = 7; 
    INPUTS    = 2: 
      I0 = INT 32 BITS (a)  // explicit input 
      I1 = INT 32 BITS (b)  // explicit input 
      ; 
   OUTPUTS = 1: 
      O0 = INT 32 BITS (prod)  // explicit output 
      ; 
 
    IN_SIGNAL : 1 BITS "clk" = "CLOCK"; 
 
 
    DEBUG_HEADER = # 
        void my_mult__dbg (int a, int b, int *prod); 
    #; 
 
    DEBUG_FUNC = # 
        void my_mult__dbg (int a, int b, int *prod){ 
  *prod = a*b; 
  *prod >>= 32;    
 } 
    #; 
END_DEF 
 
 
BEGIN_DEF "my_add" 
    MACRO     = "add_32"; 
    STATEFUL  = NO; 
    EXTERNAL  = NO; 
    PIPELINED = NO; 
    LATENCY   = 1; 
    INPUTS    = 3: 
      I0 = INT 32 BITS (a)  // explicit input 
      I1 = INT 32 BITS (b)  // explicit input 
      I2 = INT 32 BITS (c)  // explicit input 
      ; 
   OUTPUTS = 1: 
      O0 = INT 32 BITS (sum)  // explicit output 
      ; 
 
    DEBUG_HEADER = # 
        void my_add__dbg (int a, int b, int c, int *sum); 
    #; 
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    DEBUG_FUNC = # 
        void my_add__dbg (int a, int b, int c, int *sum){ 
         *sum = a+b+c; 
     } 
    #; 
END_DEF 
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APPENDIX D. COPY OF PROFILE REPORT 

The profile report shows the execution time for non-uniform segmentation with 

the following parameters: ln( )x−  , 332ε −= and N = 1,000,000.  Profile reports are used 

to debug functions, optimize files and understand the dynamics and choke points in the 

program.  Parent functions and child functions can be analyzed to find the slow points in 

the program.     

The longest times in the report, 62.906s and 50.703s belong to xlabel and ylabel, 

respectively.  They were used to display graphs for debugging purposes.  Any function 

used to drive graphics is slow compared to computation.  In a final version, the display is 

not required and these times do not exist and therefore have no impact. 

The next longest functions are 29.063 seconds and 26.359 seconds which 

correspond to multipleQuadApprox and varQuadApproxHybThirdNew respectively.  

However notice that these are total times.  multipleQuadApprox is a parent function to 

varQuadApproxHybThirdNew. Notice too that the column Self Time indicates the amount 

of time that the function actually spends in itself, i.e. the remaining time is spent in the 

child functions.  The child function to varQuadApproxHybThirdNew is chebyRemez.  

This makes chebyRemez the longest part of the code.  The child functions in chebyRemez 

take up a lot of time, but chebyRemz is the most suitable metric for comparing the speed 

of the different functions. 

Profile Summary 
Generated 28-Jul-2007 08:59:56 

Function name Calls Total 
Time 

Self Time* 

UserInput 1 0.094 s 0.094 s 

ancestor 5252 1.141 s function is recursive 

ancestor>isatype 10504 0.469 s function is recursive 

axes (Opaque-function) 5252 0.141 s 0.141 s 
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axescheck 18356 0.859 s 0.859 s 

cell.intersect 3 0.016 s 0.000 s 

cell.setdiff 3 0 s 0.000 s 

cell.sort 15 0.016 s 0.016 s 

cell.strmatch 1 0 s 0.000 s 

cell.unique 9 0.016 s 0.000 s 

cellfun (MEX-function) 49 0 s 0.000 s 

cellstr 6 0 s 0.000 s 

chebyRemz 4182 20.469 s 11.328 s 

colstyle 1 0 s 0.000 s 

deal 1 0 s 0.000 s 

double.superiorfloat 34078 0.141 s 0.141 s 

fcnchk 1 0 s 0.000 s 

findall 2 0 s 0.000 s 

fliplr 35592 0.391 s 0.391 s 

gca 13113 0.922 s 0.578 s 

gcf 13113 0.391 s 0.391 s 

getF 1 0.094 s 0.078 s 

getappdata 6 0 s 0.000 s 

graph2d.series.schema>LdoDirtyAction 3 0.016 s function is recursive 

...h2d.series.schema>LdoModeSwitchAction 2 0 s function is recursive 

....series.schema>LdoSetManualModeAction 1 0 s function is recursive 

graph2d.series.schema>LdoYDataAction 1 0 s function is recursive 

graph2d.series.schema>LsetXDataSilently 1 0 s 0.000 s 

graphics\private\clo 2 0.031 s 0.000 s 

graphics\private\clo>find_kids 2 0 s 0.000 s 
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handle.listener (Opaque-function) 6 0 s 0.000 s 

hasbehavior 2 0 s 0.000 s 

hold 2623 1.422 s 0.438 s 

inline.feval 164 0.031 s 0.016 s 

inline.inline 3 0.094 s 0.000 s 

inline.inline>strtrim 3 0 s 0.000 s 

inline.subsref 46123 12.172 s 1.563 s 

inlineeval 46287 10.625 s 10.625 s 

int2str 2622 0.219 s 0.219 s 

intersect 3 0.016 s 0.016 s 

isappdata 7871 0.563 s 0.344 s 

iscell 9 0 s 0.000 s 

iscellstr 41 0 s 0.000 s 

isfield 7877 0.219 s 0.219 s 

ishghandle 5252 0.250 s 0.250 s 

ishold 1 0 s 0.000 s 

iskeyword 2636 0.078 s 0.078 s 

ismembc (MEX-function) 1 0 s 0.000 s 

ismembc2 (MEX-function) 1 0 s 0.000 s 

ismember 8 0 s 0.000 s 

isobject 1 0 s 0.000 s 

ispc 6 0 s 0.000 s 

isstruct 1 0 s 0.000 s 

isvarname 2638 0.188 s 0.109 s 

legend 1 0.016 s function is recursive 

legend>find_legend 1 0 s function is recursive 
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legend>islegend 1 0 s 0.000 s 

legendinfo 1 0.016 s function is recursive 

legendinfo>check_xydata 3 0 s 0.000 s 

legendinfo>parsestruct 2 0 s function is recursive 

line (Opaque-function) 3 0 s 0.000 s 

linspace 4183 0.391 s 0.391 s 

log10 2622 0.016 s 0.016 s 

maple 36 0 s 0.000 s 

maplemex (MEX-function) 36 0 s 0.000 s 

meshgrid 4 0 s 0.000 s 

multipleQuadApprox 1 29.063 s 0.188 s 

newplot 2624 1.453 s 0.500 s 

newplot>ObserveAxesNextPlot 2624 0.641 s 0.047 s 

newplot>ObserveFigureNextPlot 2624 0.094 s 0.094 s 

num2str 5244 0.828 s 0.594 s 

opaque.double 11 0 s 0.000 s 

parseparams 1 0 s 0.000 s 

plotdoneevent 1 0 s 0.000 s 

polyval 34078 1.922 s 1.781 s 

quadl 1 0.078 s 0.000 s 

quadl>quadlstep 163 0.078 s function is recursive 

scribe.legendinfo (Opaque-function) 4 0 s function is recursive 

scribe.legendinfo.legendinfo 1 0 s function is recursive 

scribe.legendinfochild (Opaque-function) 12 0 s function is recursive 

scribe.legendinfochild.legendinfochild 3 0 s function is recursive 

setdiff 7 0.078 s 0.063 s 
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sortcellchar (MEX-function) 15 0 s 0.000 s 

specgraph.baseline (Opaque-function) 7 0.047 s function is recursive 

specgraph.baseline.baseline 1 0.047 s function is recursive 

specgraph.stemseries (Opaque-function) 25 0.078 s function is recursive 

specgraph.stemseries.refresh 2 0.016 s function is recursive 

....stemseries.schema>LdoEdgeColorAction 1 0 s 0.000 s 

....stemseries.schema>LdoFaceColorAction 1 0 s 0.000 s 

...ies.schema>LdoSetManualCodeModeActio
n 3 0 s function is recursive 

...aph.stemseries.schema>LdoUpdateAction 2 0 s 0.000 s 

...series.schema>LdoUpdateBaselineAction 1 0 s 0.000 s 

...ies.schema>LdoUpdateChildMarkerAction 2 0 s 0.000 s 

...series.schema>LdoUpdateChildrenAction 3 0.016 s function is recursive 

...temseries.schema>LdoUpdateXDataAction 2 0 s 0.000 s 

specgraph.stemseries.setLegendInfo 1 0.016 s function is recursive 

specgraph.stemseries.stemseries 1 0.063 s function is recursive 

specgraph\private\checkpvpairs 1 0 s 0.000 s 

specgraph\private\nextstyle 1 0.016 s 0.016 s 

stem 1 0.109 s 0.016 s 

stem>parseargs 1 0 s 0.000 s 

str2num 10 0.016 s 0.016 s 

str2num>protected_conversion 10 0 s 0.000 s 

strmatch 1 0 s 0.000 s 

sym.abs 1 0 s 0.000 s 

sym.char 16 0.016 s 0.016 s 

sym.diff 3 0.016 s 0.000 s 

sym.eq 1 0 s 0.000 s 
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sym.findsym 3 0.016 s 0.000 s 

sym.findsym>pickvar 3 0.016 s 0.016 s 

sym.log 2 0.047 s 0.000 s 

sym.maple 10 0.047 s 0.000 s 

sym.sqrt 2 0.016 s 0.016 s 

sym.sym 1329 0.266 s 0.063 s 

sym.sym>char2sym 1324 0.203 s 0.094 s 

sym.sym>trim 1324 0.031 s 0.000 s 

sym.uminus 2 0 s 0.000 s 

syms 1314 0.578 s 0.219 s 

symvar 3 0.094 s 0.000 s 

symvar>findrun 12 0.016 s 0.016 s 

symvar>isquoted 3 0 s 0.000 s 

title 5244 1.234 s function is recursive 

unique 4 0.016 s 0.016 s 

usev6plotapi 1 0 s 0.000 s 

varQuadApproxHybThirdNew 1311 26.359 s 3.297 s 

vectorize 3 0.031 s 0.031 s 

xlabel 5244 62.906 s function is recursive 

xychk 1 0 s 0.000 s 

ylabel 5244 50.703 s function is recursive 

Self time is the time spent in a function excluding the time spent in its child functions. 
Self time also includes overhead resulting from the process of profiling. 
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APPENDIX E. LESSONS LEARNED 

This section provides information and a record of problems that were encountered 

while using the SRC-6, and other software applications in this thesis.  The intent is to 

provide a reference to specific issues previously encountered and to reduce the amount of 

time to resolve or understand them in the future. 

 

E.1 FILE NAMING PROBLEMS 
Problem:  When you compile your VHDL code using Xilinx’s ISE Navigator, it accepts 
upper and lower case versions of letters as the same.    That is, adderVerilog.vhd and 
adderverilog.vhd are the same file to Xilinx’s ISE Navigator.  However, files in the 
SRC are case sensitive.   That is, adderVerilog.vhd and adderverilog.vhd are 
DIFFERENT files in the SRC-6.   So, if you have listed adderverilog.vhd in your 
Makefile as a macro, it will not recognize  adderVerilog.vhd as the target file.  
Additionally, if you let Xilinx create VHDL code from a schematic which contains the 
module adderVerilog.vhd it will list refer to the module in the VHDL code as 
adderverilog.vhd. 
 
Solution:  Use lower case letters for ALL files. 
 
Author: J.T. Butler 
Date:  26 FEB 07 
 
E.2 USING THE CONST CONSTRUCT IN C 

Problem:  A martello64 error is obtained when using  
 
               int64_t  array[5][5] = { {1,2,3,4,5}; 
                                      {6,7,8,9,10}; 
                                      {11,12,13,14,15}; 
                                      {16,17,18,19,20}; 
                                      {21,22,23,24,25} }; 
 
The error is caused by “too many accesses to BRAM”.    
 
Background:  This is a correct C construct when used on a PC or workstation.   
However, when it is in a .mc file, this declaration will cause a martello64 error.   It is 
possibly due to too many accesses to a BRAM  (arrays are usually stored in BRAM). 
 
This was a problem that Scott Bailey experienced.   The initial writeup is based on a 
conversation between Scott Bailey and Jon Butler on December 1, 2006 
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Solution:  In discussing this with Dave Caliga, Scott learned that the Carte™ 2.2 version 
should correct this error.   At the time the error occurred, we were using Carte™ 2.1.  
Apparently, Carte™ 2.2 spaces out the accesses to BRAM so that it can be changed to 
include ALL 25 data values.  However, in order to use it in Carte™ 2.2, you need to 
declare the array as a constant, like so 
 
      const  int64_t  array[5][5] = { {1,2,3,4,5}; 
                                      {6,7,8,9,10}; 
                                      {11,12,13,14,15}; 
                                      {16,17,18,19,20}; 
                                      {21,22,23,24,25} } 
 
The intent of const is to set up a constant array that is not changed in the rest of the 
program, much like a ROM instead of RAM.    
 
Scott Bailey tried to work around this error by simply defining the array without 
populating it with initial values, using, for example:    int64_t array[5][5];   The 
compiler accepted this.   He then put the desired values into array using for loops.  
These arrays will then work as normal C arrays within the .mc code.  However, this 
decreases performance, since the values placed into the array must come from either 
OBM or streams, access of which will incur a time penalty.  Scott believes that the 
problem is in putting too many values into BRAM too quickly.  In a dialog with Dave 
Caliga (SRC Computers), Dave said that the problem occurs when there are more than 8 
initialized values placed in the array.    Scott believes that this problem will occur in 
BOTH Carte™ 2.1 and 2.2 for non-constant BRAM arrays.     
 
Author: J.T. Butler 
Date:  26 FEB 07 
 
E.3 INCORRECT ARGUMENTS IN SYSTEM SUPPLIED MACROS 
Problem:  A core dump occurs when the call-by-value and call-by-reference conventions 
are not adhered to 
 
                    popcount_64(int64_t a, int array[i]) 
 
Instead of an error message, there will be a core dump.  
 
Background:    This was provided by Scott Bailey in a conversation with Jon Butler on 
December 1, 2006. 
 
Solution:  To solve this problem, use the following code. 
 
                    popcount_64(int64_t a, &temp) 
                    array[i] = temp; 
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For most system macros, SRC requires that the input values be passed as call-by-value 
(e.g. a) and all output values be done as call-by-reference (e.g. &temp). 
Author: J.T. Butler 
Date:  26 FEB 07 
 
E.4 IF / THEN / ELSE LIMITATION 
Problem:  When programming in C within the .mc file (no macro) an error occurs when 
the “If, then, else” chain is too long (approx 26 long). 
 
Background:  This was discovered by Prof. Jon Butler when trying to implement a long 
“if,then,else” string during testing. 
 
Solution:  SRC Carte™ V2.2 fixes this problem. 
 
Author: T.J. Mack 
Date:  26 FEB 07 
 
E.5 MULTIPLE FILES USED IN A MACRO 
Problem:  When using multiple files to describe a circuit in a macro, the SRC won’t 
successfully compile. 
 
Background:  This was discovered while developing the NFG macro where different 
modules are described in separate VHDL files. 
 
Solution:  List all of the VHDL files within the Makefile under macros, separated by a 
space. 
 
Author: T.J. Mack 
Date:  26 FEB 07 
 
E.6 XILINX / SYNPLIFY INCONSISTENCIES 
Problem:  VHDL code synthesizes correctly (no errors) in Xilinx XST, but does not in 
Synplify PRO. 
 
Background:  When developing VHDL code for the NFG, the code was originally 
written in the Xilinx ISE.  Checking for errors using Xilinx XST resulted in no errors.  
When the code was transported to the SRC, errors resulted.  Further troubleshooting 
produced the same errors when using the stand-alone Synplify. 
 
Solution:  Not all code is universal.  Always test code using a stand-alone version of 
Synplify.  If it results in errors, the code must be modified. 
Author: T.J. Mack 
Date:  26 FEB 07 
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E.7 MODELSIM AND MULTIPLE HDL’S 
Problem:  ModelSim XE (Xilinx Edition) which is obtained for free from the Xilinx 
website does not support multiple HDL’s. 
 
Background:  When developing the NFG, some code was provided by SRC in Verilog.  
When attempting to analyze the circuit with a test bench, an error occurred in ModelSim.  
The error stated that ModelSim XE does not support multiple HDL’s. 
 
Solution:  Download ModelSim SE.  NPS has a license.  Details available from Dan 
Zulaica. 
Author: T.J. Mack 
Date:  26 FEB 07 
 
E.8 INITIALIZING MEMORY FROM A SEPARATE FILE 
Problem:  Xilinx allows one to synthesize a ROM where the ROM contents are specified 
in a separate file.  When transferring the VHDL files to the SRC and synthesizing with 
Synplify, an error results.  This is another artifact of problem F. above. 
 
Background:  Because of the potentially large amount of data needed to load into a 
ROM, it is useful to have a separate file with just this data.  The HDL must then access 
this data file during synthesis.   
 
Solution:  Problem not completely solved, yet.  Some potential solutions are: 
 
 1. Below is a ROM provided by SRC Computers.  Written in Verilog, (SRC 
Computer’s preferred language) it is comprised of 32, 4-input, 1-bit output LUTs.  It has 
a 32-bit output.  It is initialized using a separate .sdc file. 
 
module MY_ROM ( 
         data, 
         adr 
         ); 
     output [31:0] data; 
     input [3:0] adr; 
 
    ROM16X1 M0 ( 
        .O      (data[0]), 
        .A0     (adr[0]), 
        .A1     (adr[1]), 
        .A2     (adr[2]), 
        .A3     (adr[3]) 
        ); 
 
    ROM16X1 M1 ( 
        .O      (data[1]), 
        .A0     (adr[0]), 
        .A1     (adr[1]), 
        .A2     (adr[2]), 
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        .A3     (adr[3]) 
        ); 
   ... 
 *** Fill-In Remaining Modules *** 
   ... 
    ROM16X1 M31 ( 
        .O      (data[31]), 
        .A0     (adr[0]), 
        .A1     (adr[1]), 
        .A2     (adr[2]), 
        .A3     (adr[3]) 
        ); 
 
endmodule 
 
 The ROM initialization values are in the .sdc file below.  The INITs are 
somewhat cumbersome, since the LUTs are 1-bit wide.  So each of the LUTs has one bit 
position for all of the 16 values.  The INIT values essentially represent a 32 row by 16 
column matrix.  Each column represents one of 16, 32-bit outputs. 
 
define_attribute {i:M0}  xc_props  "INIT=ba5d" 
define_attribute {i:M1}  xc_props  "INIT=8801" 
   ... 
 *** Fill-In Missing Values *** 
   ... 
define_attribute {i:M31}  xc_props  "INIT=1321" 
 
 This is the most promising example of a ROM with an external file for 
initialization.  However, the 1-bit format of the init values makes it difficult to 
implement. 
 

2. Below is another ROM example provided by SRC Computers.  It uses the 
RAMB16_S18_S18 module which is a 16 Kb Block RAM with two 18-bit outputs (16-
bits plus 2-bits for parity).  It is initialized using the xc_props lines within the same 
file. 
 
module MY_ROM ( 
         din_0, 
         dout_0, 
         din_1, 
         dout_1, 
         adr_0, 
         adr_1, 
         w_en_0, 
         w_en_1, 
         clk 
         ); 
     input [15:0] din_0; 
     output [15:0] dout_0; 
     input [15:0] din_1; 
     output [15:0] dout_1; 
     input [9:0] adr_0; 
     input [9:0] adr_1; 
     input w_en_0; 
     input w_en_1; 
     input clk  /*  synthesis syn_noclockbuf=1  */  ; 
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    RAMB16_S18_S18 M0 ( 
        .DOA    (dout_0[15:0]), 
        .DOB    (dout_1[15:0]), 
        .DOPA   (),             // ignore the parity outputs 
        .DOPB   (),             // ignore the parity outputs 
        .ADDRA  (adr_0), 
        .ADDRB  (adr_1), 
        .CLKA   (clk), 
        .CLKB   (clk), 
        .DIA    (din_0[15:0]), 
        .DIB    (din_1[15:0]), 
        .DIPA   (2'b0),         // zero the parity inputs 
        .DIPB   (2'b0),         // zero the parity inputs 
        .ENA    (1'b1), 
        .ENB    (1'b1), 
        .SSRA   (1'b0), 
        .SSRB   (1'b0), 
        .WEA    (w_en_0), 
        .WEB    (w_en_1) 
        )  /*  synthesis  
 
xc_props="INIT_00=76931fac9dab2b36c248b87d6ae33f9a62d7183a5d5789e4b2d6b441e2411dc7,\ 
INIT_01=09e111c7e1e7acb6f8cac0bb2fc4c8bc2ae3baaab9165cc458e199cb89f51b13,\ 
INIT_02=5f7091a5abb0874df3e8cb4543a5eb93b0441e9ca4c2b0fb3d30875cbf29abd5,\ 
INIT_3e=1a0bf9b00ffd21b6210b11dc59ec947be86d11e10de2e980b8bc988e26aba269,\ 
   ... 
 *** Fill-In Missing Values *** 
   ... 
INIT_3f=ac6bd4cd2bf0471ffcb95377922449de5393850a00a57b47800d374d961dfeb5"  */  ; 
 
endmodule 
 

 3. The following code is a 16 x 32-bit ROM written in Verilog.  It will 
synthesize in Xilinx XST, but not in Synplify PRO. 
 
module romverlog(input [3:0] raddr, output [31:0] slope_int); 
 
reg [15:0] mem [31:0]; 
 
initial 
      begin 
         $readmemb("memory.mem", mem);  
      end  
  
    assign slope_int = mem[raddr]; 
 
endmodule 
 
 The associated memory.mem file is a simple, binary text file with the memory 
initialization values. 
 
00000110010001000000000000000000 
00000110001011010000000000000000 
00000101111111110000000000000100 
00000101101110100000000000001100 
00000101011000000000000000011010 
00000100111100010000000000101111 
00000100011100000000000001001101 
00000011110111110000000001110100 
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00000011001111110000000010100101 
00000010100100110000000011100001 
00000001110111100000000100100111 
00000001001000010000000101110111 
00000000011000000000000111001111 
00000001110111100000000100100111 
00000001001000010000000101110111 
00000000011000000000000111001111 
 
Author: T.J. Mack 
Date:  26 FEB 07 
 
E.9 MACRO LATENCY AND SRC OVERHEAD 
Problem:  When implementing a macro, SRC requires additional clocks to accomplish 
overhead operations.  The overhead appears to be 5 clock cycles to pass data to a macro 
and an additional 5 clock cycles to receive data from a macro.  One would expect a macro 
with a latency of 3 to take a total of 13 clock cycles.  However, it takes only 12.  The last 
clock cycle is absorbed into the 5 clock cycles needed to receive data from the macro.  In 
this case, the latency in the info file must be set equal to 2, even though the schematic 
may show a latency of 3. 
 
Background:  When developing the NFG, pipeline depth reports for the loop that calls 
the NFG macro were always 10 clock cycles more. 
 
Solution:  No solution.  This is a characteristic of the SRC architecture. 
 
Author: T.J. Mack 
Date:  26 FEB 07 
 

E.10 CANNOT USE PRIORITY SELECTOR GREATER THAN 128  
Problem:  When implementing a priority selector with 256 elements, 64 bits wide, I 
could not compile the .mc file.  This is because the architecture already had 3 64 bit wide 
multipliers and other hardware that consumed some of the resources.  However, if you 
don’t need all 256 priority selectors, it would be nice to have a selector that is greater 
than 128, and smaller than 256. 
 
Background:  When implementing the priority selectors with 150 elements, the only 
option for a single selector is to use the 256 selector, but that is 106 more elements than 
required. 
 
Solution:  Use multiple selectors of smaller sizes.  
 
Author: N. Macaria 
Date:  26JUL07 
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E.11 IF-THEN-ELSE STATEMENT WITH SRC PRIORITY SELECTORS 
Problem:  When implementing multiple priority selectors in the .mc file, SRC would not 
accept an if-then-else statement to contain priority selectors in the body.  
 
Background:  When running the program, it would not compile if a priority selector was 
used inside an if-then-else statement.. 
 
Solution:  Put the if-then-else statement prior to the priority selector, use a variable to 
store the selector you want to pick, then use a case statement to reach that selector. 
 
Author: N. Macaria 
Date:  26JUL07 
 
E.12 FIND THE SLOW CODE IN MATLAB PROGRAMS  
Problem:  When running MATLAB programs, sometimes the code takes very long to 
execute and you may not be sure where the problem exists.  
 
Background:  When running the chebyRemz, program, there were portions of code that 
would take very long to run.   
 
Solution:  Put the if-then-else statement prior to the priority selector, use a variable to 
store the selector you want to pick, then use a case statement to reach that selector. 
 
Author: N. Macaria 
Date:  26JUL07 
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APPENDIX F. SEGMENT ESTIMATION EQUATION 

The segment estimation equation is derived from analyzing the Chebyshev 

approximation error equation (0.6) is the general case: 
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The variable d is the order of the approximation to be used.  For the case of quadratic 
approximation, d=2 and (b-a) is the estimated width of the segment. 
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